
Computing (2016) 98:967–1009
DOI 10.1007/s00607-016-0508-7

A brief introduction to distributed systems

Maarten van Steen1 · Andrew S. Tanenbaum2

Received: 8 June 2016 / Accepted: 7 July 2016 / Published online: 16 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Distributed systems are by now commonplace, yet remain an often difficult
area of research. This is partly explained by the many facets of such systems and the
inherent difficulty to isolate these facets from each other. In this paper we provide a
brief overview of distributed systems: what they are, their general design goals, and
some of the most common types.

Keywords Distributed computer system · Networked computer systems

Mathematics Subject Classification 68M14 (Distributed Systems)

1 Introduction

Thepace atwhich computer systems changewas, is, and continues to beoverwhelming.
From 1945, when the modern computer era began, until about 1985, computers were
large and expensive. Moreover, for lack of a way to connect them, these computers
operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to change
that situation. The first was the development of powerful microprocessors. Initially,
these were 8-bit machines, but soon 16-, 32-, and 64-bit CPUs became common.

This material is based on an updated version of the textbook “Distributed Systems, Principles and
Paradigms,” (2nd edition) by the same authors.

B Maarten van Steen
m.r.vansteen@utwente.nl

Andrew S. Tanenbaum
ast@cs.vu.nl

1 University of Twente, Enschede, The Netherlands

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-016-0508-7&domain=pdf


968 M. van Steen, A. S. Tanenbaum

With multicore CPUs, we now are refacing the challenge of adapting and developing
programs to exploit parallelism. In any case, the current generation of machines have
the computing power of the mainframes deployed 30 or 40 years ago, but for 1/1000th
of the price or less.

The second development was the invention of high-speed computer networks.
Local-area networks or LANs allow thousands of machines within a building or
campus to be connected in such a way that small amounts of information can be trans-
ferred in a few microseconds or so. Larger amounts of data can be moved between
machines at rates of billions of bits per second (bps).Wide-area networks or WANs
allow hundreds of millions of machines all over the earth to be connected at speeds
varying from tens of thousands to hundreds ofmillions bps, and sometimes even faster.

Parallel to the development of increasingly powerful and networked machines, we
have also been able to witness miniaturization of computer systems with perhaps the
smartphone as the most impressive outcome. Packed with sensors, lots of memory,
and a powerful CPU, these devices are nothing less than full-fledged computers. Of
course, they also have networking capabilities. Along the same lines, plug computers
and other so-called nano computers are finding their way to the market. These small
computers, often the size of a power adapter, can often be plugged directly into an
outlet and offer near-desktop performance.

The result of these technologies is that it is now not only feasible, but easy, to put
together a computing system composed ofmany networked computers, be they large or
small. These computers are generally geographically dispersed, for which reason they
are usually said to form a distributed system. The size of a distributed system may
vary from a handful of devices, to millions of computers. The interconnection network
may be wired, wireless, or a combination of both. Moreover, distributed systems are
often highly dynamic, in the sense that computers can join and leave, with the topology
and performance of the underlying network almost continuously changing.

In this paper, we provide a brief introduction to distributed systems, covering mate-
rial from the past decades, in addition to looking toward what the future may bring
us.

2 What is a distributed system?

Various definitions of distributed systems have been given in the literature, none of
them satisfactory, and none of them in agreement with any of the others. For our
purposes it is sufficient to give a loose characterization:

A distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system.

This definition refers to two characteristic features of distributed systems. The first
one is that a distributed system is a collection of computing elements each being
able to behave independently of each other. A computing element, which we will
generally refer to as a node, can be either a hardware device or a software process. A
second element is that users (be they people or applications) believe they are dealing
with a single system. This means that one way or another the autonomous nodes

123



A brief introduction to distributed systems 969

need to collaborate. How to establish this collaboration lies at the heart of developing
distributed systems. Note that we are not making any assumptions concerning the
type of nodes. In principle, even within a single system, they could range from high-
performance mainframe computers to small devices in sensor networks. Likewise, we
make no assumptions concerning the way that nodes are interconnected.

2.1 Characteristic 1: collection of autonomous computing elements

Modern distributed systems can, and often will, consist of all kinds of nodes, ranging
from very big high-performance computers to small plug computers or even smaller
devices. A fundamental principle is that nodes can act independently from each other,
although it should be obvious that if they ignore each other, then there is no use in
putting them into the same distributed system. In practice, nodes are programmed to
achieve common goals, which are realized by exchanging messages with each other.
A node reacts to incoming messages, which are then processed and, in turn, leading
to further communication through message passing.

An important observation is that, as a consequence of dealing with independent
nodes, each one will have its own notion of time. In other words, we cannot assume
that there is something like a global clock. This lack of a common reference of time
leads to fundamental questions regarding the synchronization and coordination within
a distributed system.

The fact that we are dealing with a collection of nodes implies that we may also
need to manage the membership and organization of that collection. In other words,
we may need to register which nodes may or may not belong to the system, and also
provide each member with a list of nodes it can directly communicate with.

Managing group membership can be exceedingly difficult, if only for reasons of
admission control. To explain, wemake a distinction between open and closed groups.
In an open group, any node is allowed to join the distributed system, effectively
meaning that it can send messages to any other node in the system. In contrast, with a
closed group, only the members of that group can communicate with each other and
a separate mechanism is needed to let a node join or leave the group.

It is not difficult to see that admission control can be difficult. First, a mechanism is
needed to authenticate a node, and if not properly designed managing authentication
can easily create a scalability bottleneck. Second, each node must, in principle, check
if it is indeed communicating with another group member and not, for example, with
an intruder aiming to create havoc. Finally, considering that a member can easily
communicate with nonmembers, if confidentiality is an issue in the communication
within the distributed system, we may be facing trust issues.

Practice shows that a distributed system is often organized as an overlay net-
work [55]. In this case, a node is typically a software process equipped with a list of
other processes it can directly sendmessages to. It may also be the case that a neighbor
needs to be first looked up. Message passing is then done through TCP/IP or UDP
channels, but higher-level facilities may be available as well. There are roughly two
basic types of overlay networks:

123



970 M. van Steen, A. S. Tanenbaum

Structured overlay In this case, each node has a well-defined set of neighbors with
whom it can communicate. For example, the nodes are organized in a tree or logical
ring.

Unstructured overlay In these overlays, each node has a number of references to
randomly selected other nodes.

In any case, an overlay network should in principle always be connected, meaning
that between any two nodes there is always a communication path allowing those nodes
to route messages from one to the other. A well-known class of overlays is formed
by peer-to-peer (P2P) networks. It is important to realize that the organization of
nodes requires special effort and that it is sometimes one of the more intricate parts of
distributed-systems management.

2.2 Characteristic 2: single coherent system

As mentioned, a distributed system should appear as a single coherent system. In
some cases, researchers have even gone so far as to say that there should be a single-
system view, meaning that an end user should not even notice that processes, data,
and control are dispersed across a computer network. Achieving a single-system view
is often asking too much, for which reason, in our definition of a distributed system,
we have opted for something weaker, namely that it appears to be coherent. Roughly
speaking, a distributed system is coherent if it behaves according to the expectations
of its users. More specifically, in a single coherent system the collection of nodes as a
whole operates the same, no matter where, when, and how interaction between a user
and the system takes place.

Offering a single coherent view is often challenging enough. For example, it requires
that an end user would not be able to tell exactly on which computer a process is
currently executing, or even perhaps that part of a task has been spawned off to another
process executing somewhere else. Likewise, where data is stored should be of no
concern, and neither should itmatter that the systemmay be replicating data to enhance
performance. This so-called distribution transparency is an important design goal
of distributed systems. In a sense, it is akin to the approach taken in many Unix-like
operating systems in which resources are accessed through a unifying file-system
interface, effectively hiding the differences between files, storage devices, and main
memory, but also networks.

However, striving for a single coherent system introduces an important trade-off.
As we cannot ignore the fact that a distributed system consists of multiple, networked
nodes, it is inevitable that at any time only a part of the system fails. This means
that unexpected behavior in which, for example, some applications may continue to
execute successfully while others come to a grinding halt, is a reality that needs to
be dealt with. Although partial failures are inherent to any complex system, in the
case of distributed systems they are particularly difficult to hide. It lead Turing-award
winner Leslie Lamport to describe a distributed system as “[. . .] one in which the
failure of a computer you did not even know existed can render your own computer
unusable.”

123



A brief introduction to distributed systems 971

2.3 Middleware and distributed systems

To assist the development of distributed applications, distributed systems are often
organized to have a separate layer of software that is logically placed on top of the
respective operating systems of the computers that are part of the system. This orga-
nization is shown in Fig. 1, leading to what is known asmiddleware [12].

Figure 1 shows four networked computers and three applications, of which appli-
cation B is distributed across computers 2 and 3. Each application is offered the
same interface. The distributed system provides the means for components of a single
distributed application to communicate with each other, but also to let different appli-
cations communicate. At the same time, it hides, as best and reasonable as possible,
the differences in hardware and operating systems from each application.

In a sense, middleware is the same to a distributed system as what an operating
system is to a computer: a manager of resources offering its applications to efficiently
share and deploy those resources across a network. Next to resource management, it
offers services that can also be found in most operating systems, including:

– Facilities for interapplication communication.
– Security services.
– Accounting services.
– Masking of and recovery from failures.

The main difference with their operating-system equivalents, is that middleware ser-
vices are offered in a networked environment. Note also that most services are useful
to many applications. In this sense, middleware can also be viewed as a container of
commonly used components and functions that now no longer have to be implemented
by applications separately. To further illustrate these points, let us briefly consider a
few examples of typical middleware services.

Communication A common communication service is the so-called Remote Proce-
dure Call (RPC). An RPC service allows an application to invoke a function that is
implemented and executed on a remote computer as if it was locally available. To this

Local OS 1 Local OS 2 Local OS 3 Local OS 4

C.lppABnoitacilppAA.lppA

Distributed-system layer (middleware)

Computer 1 Computer 2 Computer 3 Computer 4

Same interface everywhere

Network

Fig. 1 A distributed system organized as middleware. The middleware layer extends over multiple
machines, and offers each application the same interface

123



972 M. van Steen, A. S. Tanenbaum

end, a developer need merely specify the function header expressed in a special pro-
gramming language, from which the RPC subsystem can then generate the necessary
code that establishes remote invocations.

Transactions Many applications make use of multiple services that are distributed
among several computers. Middleware generally offers special support for executing
such services in an all-or-nothing fashion, commonly referred to as an atomic trans-
action. In this case, the application developer need only specify the remote services
involved, and by following a standardized protocol, the middleware makes sure that
every service is invoked, or none at all.

Service composition It is becoming increasingly common to develop new applications
by taking existing programs and gluing them together. This is notably the case for
many Web-based applications, in particular those known as Web services [5]. Web-
based middleware can help by standardizing the way Web services are accessed and
providing themeans to generate their functions in a specific order. A simple example of
how service composition is deployed is formed bymashups: web pages that combine
and aggregate data from different sources. Well-known mashups are those based on
Google maps in which maps are enhanced with extra information such as trip planners
or real-time weather forecasts.

ReliabilityAsa last example, there has been awealth of researchonproviding enhanced
functions for building reliable distributed applications. The Horus toolkit [60] allows
a developer to build an application as a group of processes such that any message sent
by one process is guaranteed to be received by all or no other process. As it turns
out, such guarantees can greatly simplify developing distributed applications and are
typically implemented as part of a middleware layer.

3 Design goals

Just because it is possible to build distributed systems does not necessarily mean that
it is a good idea. There are four important goals that should be met to make building a
distributed systemworth the effort. A distributed system should make resources easily
accessible; it should hide the fact that resources are distributed across a network; it
should be open; and it should be scalable.

3.1 Supporting resource sharing

An important goal of a distributed system is tomake it easy for users (and applications)
to access and share remote resources. Resources can be virtually anything, but typical
examples include peripherals, storage facilities, data, files, services, and networks, to
name just a few. There are many reasons for wanting to share resources. One obvious
reason is that of economics. For example, it is cheaper to have a single high-end
reliable storage facility be shared then having to buy and maintain storage for each
user separately.

123



A brief introduction to distributed systems 973

Connecting users and resources also makes it easier to collaborate and exchange
information, as is illustrated by the success of the Internet with its simple protocols for
exchanging files, mail, documents, audio, and video. The connectivity of the Internet
has allowed geographically widely dispersed groups of peoplework together bymeans
of all kinds of groupware, that is, software for collaborative editing, teleconferencing,
and so on, as is illustrated bymultinational software-development companies that have
outsourced much of their code production to Asia.

However, resource sharing in distributed systems is perhaps best illustrated by
the success of file-sharing peer-to-peer networks like BitTorrent. These distributed
systems make it extremely simple for users to share files across the Internet. Peer-to-
peer networks are often associated with distribution of media files such as audio and
video. In other cases, the technology is used for distributing large amounts of data,
as in the case of software updates, backup services, and data synchronization across
multiple servers.

3.2 Making distribution transparent

An important goal of a distributed system is to hide the fact that its processes and
resources are physically distributed across multiple computers, possibly separated
by large distances. In other words, it tries to make the distribution of processes and
resources transparent, that is, invisible, to end users and applications.

Types of distribution transparency

The concept of transparency can be applied to several aspects of a distributed system,
of which the most important ones are listed in Table 1. We use the term object to mean
either a process or a resource.

Access transparency deals with hiding differences in data representation and the
way that objects can be accessed. At a basic level, we want to hide differences in
machine architectures, but more important is that we reach agreement on how data
is to be represented by different machines and operating systems. For example, a
distributed system may have computer systems that run different operating systems,
each having their own file-naming conventions. Differences in naming conventions,
differences in file operations, or differences in how low-level communication with

Table 1 Different forms of transparency in a distributed system (see ISO [31])

Transparency Description

Access Hide differences in data representation and how an object is accessed

Location Hide where an object is located

Relocation Hide that an object may be moved to another location while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency Hide that an object may be shared by several independent users

Failure Hide the failure and recovery of an object

123



974 M. van Steen, A. S. Tanenbaum

other processes is to take place, are examples of access issues that should preferably
be hidden from users and applications.

An important group of transparency types concerns the location of a process or
resource. Location transparency refers to the fact that users cannot tell where an
object is physically located in the system. Naming plays an important role in achieving
location transparency. In particular, location transparency can often be achieved by
assigning only logical names to resources, that is, names in which the location of
a resource is not secretly encoded. An example of a such a name is the uniform
resource locator (URL) http://www.distributed-systems.net/index.php, which gives
no clue about the actual location of the site’s Web server. The URL also gives no clue
as to whether the file index.php has always been at its current location or was recently
moved there. For example, the entire sitemayhave beenmoved fromone (part of a) data
center to another to make more efficient use of disk space, yet users should not notice.
The latter is an example of relocation transparency, which is becoming increasingly
important in the context of cloud computing to which we return in later sections.

Where relocation transparency refers to being moved by the distributed system,
migration transparency is offered by a distributed system when it supports the
mobility of processes and resources initiated by users, without affecting ongoing
communication and operations. A typical example is communication between mobile
phones: regardless whether two people are actually moving, mobile phones will allow
them to continue their conversation. Other examples that come to mind include online
tracking and tracing of goods as they are being transported from one place to another,
and teleconferencing (partly) using devices that are equipped with mobile Internet.

Replication plays an important role in distributed systems. For example, resources
may be replicated to increase availability or to improve performance by placing a
copy close to the place where it is accessed. Replication transparency deals with
hiding the fact that several copies of a resource exist, or that several processes are
operating in some form of lockstep mode so that one can take over when another
fails. To hide replication from users, it is necessary that all replicas have the same
name. Consequently, a system that supports replication transparency should generally
support location transparency as well, because it would otherwise be impossible to
refer to replicas at different locations.

We already mentioned that an important goal of distributed systems is to allow
sharing of resources. In many cases, sharing resources is done in a cooperative way,
as in the case of communication channels. However, there are also many examples
of competitive sharing of resources. For example, two independent users may each
have stored their files on the same file server or may be accessing the same tables in
a shared database. In such cases, it is important that each user does not notice that the
other is making use of the same resource. This phenomenon is called concurrency
transparency. An important issue is that concurrent access to a shared resource leaves
that resource in a consistent state. Consistency can be achieved through locking mech-
anisms, by which users are, in turn, given exclusive access to the desired resource.
A more refined mechanism is to make use of transactions, but transactions may be
difficult to implement in a distributed system, notably when scalability is an issue.

Last, but certainly not least, it is important that a distributed system provides failure
transparency. This means that a user or application does not notice that some piece of

123

http://www.distributed-systems.net/index.php


A brief introduction to distributed systems 975

the system fails towork properly, and that the system subsequently (and automatically)
recovers from that failure. Masking failures is one of the hardest issues in distributed
systems and is even impossible when certain apparently realistic assumptions are
made. The main difficulty in masking and transparently recovering from failures lies
in the inability to distinguish between a dead process and a painfully slowly responding
one. For example, when contacting a busy Web server, a browser will eventually time
out and report that the Web page is unavailable. At that point, the user cannot tell
whether the server is actually down or that the network is badly congested.

Degree of distribution transparency

Although distribution transparency is generally considered preferable for any distrib-
uted system, there are situations in which attempting to blindly hide all distribution
aspects from users is not a good idea. A simple example is requesting your electronic
newspaper to appear in your mailbox before 7 A.M. local time, as usual, while you are
currently at the other end of the world living in a different time zone. Your morning
paper will not be the morning paper you are used to.

Likewise, a wide-area distributed system that connects a process in San Francisco
to a process in Amsterdam cannot be expected to hide the fact that Mother Nature will
not allow it to send a message from one process to the other in less than approximately
35 ms. Practice shows that it actually takes several 100 ms using a computer network.
Signal transmission is not only limited by the speed of light, but also by limited
processing capacities and delays in the intermediate switches.

There is also a trade-off between a high degree of transparency and the performance
of a system. For example, many Internet applications repeatedly try to contact a server
before finally giving up. Consequently, attempting to mask a transient server failure
before trying another one may slow down the system as a whole. In such a case, it
may have been better to give up earlier, or at least let the user cancel the attempts to
make contact.

Another example is where we need to guarantee that several replicas, located on
different continents, must be consistent all the time. In other words, if one copy is
changed, that change should be propagated to all copies before allowing any other
operation. It is clear that a single update operation may now even take seconds to
complete, something that cannot be hidden from users.

Finally, there are situations in which it is not at all obvious that hiding distribution is
a good idea. As distributed systems are expanding to devices that people carry around
and where the very notion of location and context awareness is becoming increasingly
important, it may be best to actually expose distribution rather than trying to hide it.
An obvious example is making use of location-based services, which can often be
found on mobile phones, such as finding the nearest Chinese take-away or checking
whether any of your friends are nearby.

Several researchers have argued that hiding distribution will only lead to further
complicating the development of distributed systems, exactly for the reason that full
distribution transparency can never be achieved. A popular technique for achieving
access transparency is to extend procedure calls to remote servers. However, Waldo
et al. [64] already pointed out that attempting to hide distribution by means of such

123



976 M. van Steen, A. S. Tanenbaum

remote procedure calls can lead to poorly understood semantics, for the simple reason
that a procedure call does change when executed over a faulty communication link.

As an alternative, various researchers and practitioners are now arguing for less
transparency, for example, by more explicitly using message-style communication, or
more explicitly posting requests to, and getting results from remote machines, as is
done in the Web when fetching pages.

A somewhat radical standpoint is taken byWams [65] by stating that partial failures
preclude relying on the successful execution of a remote service. If such reliability
cannot be guaranteed, it is then best to always perform only local executions, leading
to the copy-before-use principle. According to this principle, data can be accessed
only after they have been transferred to the machine of the process wanting that data.
Moreover, modifying a data item should not be done. Instead, it can only be updated
to a new version. It is not difficult to imagine that many other problems will surface.
However, Wams [65] shows that many existing applications can be retrofitted to this
alternative approach without sacrificing functionality.

The conclusion is that aiming for distribution transparency may be a nice goal
when designing and implementing distributed systems, but that it should be considered
together with other issues such as performance and comprehensibility. The price for
achieving full transparency may be surprisingly high.

3.3 Being open

Another important goal of distributed systems is openness. An open distributed sys-
tem is essentially a system that offers components that can easily be used by, or
integrated into other systems. At the same time, an open distributed system itself will
often consist of components that originate from elsewhere.

Interoperability, composability, and extensibility

To be open means that components should adhere to standard rules that describe the
syntax and semantics of what those components have to offer (i.e., which service
they provide). A general approach is to define services through interfaces using an
Interface Definition Language (IDL). Interface definitions written in an IDL nearly
always capture only the syntax of services. In other words, they specify precisely the
names of the functions that are available together with types of the parameters, return
values, possible exceptions that can be raised, and so on. The hard part is specifying
precisely what those services do, that is, the semantics of interfaces. In practice, such
specifications are given in an informal way by means of natural language.

If properly specified, an interface definition allows an arbitrary process that needs
a certain interface, to talk to another process that provides that interface. It also allows
two independent parties to build completely different implementations of those inter-
faces, leading to two separate components that operate in exactly the same way.

Proper specifications are complete and neutral. Completemeans that everything that
is necessary to make an implementation has indeed been specified. However, many
interface definitions are not at all complete, so that it is necessary for a developer

123



A brief introduction to distributed systems 977

to add implementation-specific details. Just as important is the fact that specifica-
tions do not prescribe what an implementation should look like; they should be
neutral.

As pointed out in Blair and Stefani [14], completeness and neutrality are impor-
tant for interoperability and portability. Interoperability characterizes the extent by
which two implementations of systems or components from different manufacturers
can co-exist and work together by merely relying on each other’s services as specified
by a common standard. Portability characterizes to what extent an application devel-
oped for a distributed system A can be executed, without modification, on a different
distributed system B that implements the same interfaces as A.

Another important goal for an open distributed system is that it should be easy to
configure the system out of different components (possibly from different developers).
Also, it should be easy to add new components or replace existing ones without
affecting those components that stay in place. In other words, an open distributed
system should also be extensible. For example, in an extensible system, it should be
relatively easy to add parts that run on a different operating system, or even to replace
an entire file system.

Of course, what we have just described is an ideal situation. Practice shows that
many distributed systems are not as open as we’d like and that still a lot of effort is
needed to put various bits and pieces together to make a distributed system. One way
out of the lack of openness is to simply reveal all the gory details of a component
and to provide developers with the actual source code. This approach is becoming
increasingly popular, leading to so-called open source projects where large groups of
people contribute to improving and debugging systems. Admittedly, this is as open as
a system can get, but if it is the best way is questionable.

Separating policy from mechanism

To achieve flexibility in open distributed systems, it is crucial that the system be
organized as a collection of relatively small and easily replaceable or adaptable com-
ponents. This implies that we should provide definitions of not only the highest-level
interfaces, that is, those seen by users and applications, but also definitions for inter-
faces to internal parts of the systemanddescribe how those parts interact. This approach
is relatively new. Many older and even contemporary systems are constructed using
a monolithic approach in which components are only logically separated but imple-
mented as one, huge program. This approach makes it hard to replace or adapt a
component without affecting the entire system. Monolithic systems thus tend to be
closed instead of open.

The need for changing a distributed system is often caused by a component that
does not provide the optimal policy for a specific user or application. As an example,
consider caching in Web browsers. There are many different parameters that need to
be considered:

StorageWhere is data to be cached? Typically, there will be an in-memory cache next
to storage on disk. In the latter case, the exact position in the local file system needs
to be considered.

123



978 M. van Steen, A. S. Tanenbaum

ExemptionWhen the cache fills up, which data is to be removed so that newly fetched
pages can be stored?

Sharing Does each browser make use of a private cache, or is a cache to be shared
among browsers of different users?

Refreshing When does a browser check if cached data is still up-to-date? Caches are
most effective when a browser can return pages without having to contact the original
Web site. However, this bears the risk of returning stale data. Note also that refresh
rates are highly dependent on which data is actually cached: whereas timetables for
trains hardly change, this is not the case forWeb pages showing current highway-traffic
conditions, or worse yet, stock prices.

What we need is a separation between policy and mechanism. In the case of Web
caching, for example, a browser should ideally provide facilities for only storing doc-
uments and at the same time allow users to decide which documents are stored and for
how long. In practice, this can be implemented by offering a rich set of parameters that
the user can set (dynamically).When taking this a step further, a browsermay evenoffer
facilities for plugging in policies that a user has implemented as a separate component.

In theory, strictly separating policies from mechanisms seems to be the way to go.
However, there is an important trade-off to consider: the stricter the separation, the
more we need to make sure that we offer the appropriate collection of mechanisms.
In practice this means that a rich set of features is offered, in turn leading to many
configuration parameters. As an example, the popular Firefox browser comes with
a few hundred configuration parameters. Just imagine how the configuration space
explodes when considering large distributed systems consisting of many components.
In other words, strict separation of policies and mechanisms may lead to highly com-
plex configuration problems.

One option to alleviate these problems is to provide reasonable defaults, and this
is what often happens in practice. An alternative approach is one in which the system
observes its own usage and dynamically changes parameter settings. These so-called
self-configuring systems are receiving increasinglymore interest from researchers ans
practitioners. Nevertheless, the fact alone that many mechanisms need to be offered in
order to support a wide range of policies often makes coding distributed systems very
complicated. Hard coding policies into a distributed system may reduce complexity
considerably, but at the price of less flexibility.

Finding the right balance in separating policies from mechanisms is one of the
reasons why designing a distributed system is sometimes more an art than a science.

3.4 Being scalable

For many of us worldwide connectivity through the Internet is as common as being
able to send a postcard to anyone anywhere around the world. Moreover, where until
recently we were used to having relatively powerful desktop computers for office
applications and storage, we are nowwitnessing that such applications and services are
being placed inwhat has been coined “the cloud,” in turn leading to an increase ofmuch

123



A brief introduction to distributed systems 979

smaller networked devices such as tablet computers. With this in mind, scalability has
become one of the most important design goals for developers of distributed systems.

Scalability dimensions

Scalability of a system can be measured along at least three different dimensions (see
Neuman [45]):

Size scalability A system can be scalable with respect to its size, meaning that we
can easily add more users and resources to the system without any noticeable loss of
performance.

Geographical scalability A geographically scalable system is one in which the users
and resources may lie far apart, but the fact that communication delays may be sig-
nificant is hardly noticed.

Administrative scalability An administratively scalable system is one that can still be
easily managed even if it spans many independent administrative organizations.

Let us take a closer look at each of these three scalability dimensions.

Size scalabilityWhen a system needs to scale, very different types of problems need to
be solved. Let us first consider scaling with respect to size. If more users or resources
need to be supported, we are often confronted with the limitations of centralized
services, although often for very different reasons. For example, many services are
centralized in the sense that they are implemented by means of a single server running
on a specificmachine in the distributed system. In amoremodern setting, wemay have
a group of collaborating servers colocated on a cluster of tightly coupled machines
physically placed at the same location. The problem with this scheme is obvious: the
server, or group of servers, can simply become a bottleneck when it needs to process
an increasing number of requests. To illustrate how this can happen, let us assume that
a service is implemented on a single machine. In that case there are essentially three
root causes for becoming a bottleneck:

– The computational capacity, limited by the CPUs
– The storage capacity, including the transfer rate between CPUs and disks
– The network between the user and the centralized service

Let us first consider the computational capacity. Just imagine a service for comput-
ing optimal routes taking real-time traffic information into account. It is not difficult to
imagine that this may be primarily a compute-bound service requiring several (some-
times tens of) seconds to complete a request. If there is only a singlemachine available,
then even a modern high-end system will eventually run into problems if the number
of requests increases beyond a certain point.

Likewise, but for different reasons, wewill run into problemswhen having a service
that is mainly I/O bound. A typical example is a poorly designed centralized search
engine. The problem with content-based search queries is that we essentially need to
match a query against an entire data set. Even with advanced indexing techniques, we
may still face the problem of having to process a huge amount of data exceeding the
main-memory capacity of themachine running the service. As a consequence, much of

123



980 M. van Steen, A. S. Tanenbaum

Queue Process

Requests Response

Fig. 2 A simple model of a service as a queuing system

the processing timewill be determined by the relatively slow disk accesses and transfer
of data between disk andmainmemory. Simply addingmore or higher-speed diskswill
prove not to be a sustainable solution as the number of requests continues to increase.

Finally, the network between the user and the service may also be the cause of poor
scalability. Just imagine a video-on-demand service that needs to stream high-quality
video to multiple users. A video stream can easily require a bandwidth of 8–10 Mbps,
meaning that if a service sets up point-to-point connections with its customers, it may
soon hit the limits of the network capacity of its own outgoing transmission lines.

Size scalability problems for centralized services can be formally analyzed using
queuing theory and making a few simplifying assumptions. At a conceptual level, a
centralized service can be modeled as the simple queuing system shown in Fig. 2:
requests are submitted to the service where they are queued until further notice. As
soon as the process can handle a next request, it fetches it from the queue, does its work,
and produces a response. We largely follow Menasce and Almeida [41] in explaining
the performance of a centralized service.

In many cases, we may assume that the queue has an infinite capacity, meaning
that there is no restriction on the number of requests that can be accepted for further
processing. Strictly speaking, this means that the arrival rate of requests is not influ-
enced by what is currently in the queue or being processed. Assuming that the arrival
rate of requests is λ requests per second, and that the processing capacity of the service
is μ requests per second, one can compute that the fraction of time pk that there are k
requests in the system is equal to:

pk =
(
1 − λ

μ

) (
λ

μ

)k

If we define the utilization U of a service as the fraction of time that it is busy, then
clearly,

U =
∑
k>0

pk = 1 − p0 = λ

μ
⇒ pk = (1 −U )Uk

We can then compute the average number N of requests in the system as

N =
∑
k≥0

k · pk =
∑
k≥0

k · (1 −U )Uk = (1 −U )
∑
k≥0

k ·Uk = (1 −U )U

(1 −U )2
= U

1 −U
.

What we are really interested in, is the response time R: how long does it take before
the service to process a request, including the time spent in the queue. To that end,

123



A brief introduction to distributed systems 981

we need the average throughput X . Considering that the service is “busy” when at
least one request is being processed, and that this then happens with a throughput of
μ requests per second, and during a fraction U of the total time, we have:

X = U · μ︸ ︷︷ ︸
server at work

+ (1 −U ) · 0︸ ︷︷ ︸
server idle

= λ

μ
· μ = λ

Using Little’s formula [57], we can then derive the response time as

R = N

X
= S

1 −U
⇒ R

S
= 1

1 −U

where S = 1
μ
, the actual service time. Note that if U is very small, the response-to-

service time ratio is close to 1, meaning that a request is virtually instantly processed,
and at the maximum speed possible. However, as soon as the utilization comes closer
to 1, we see that the response-to-server time ratio quickly increases to very high values,
effectively meaning that the system is coming close to a grinding halt. This is where
we see scalability problems emerge. From this simple model, we can see that the only
solution is bringing down the service time S.

Geographical scalability Geographical scalability has its own problems. One of the
main reasons why it is still difficult to scale existing distributed systems that were
designed for local-area networks is that many of them are based on synchronous
communication. In this form of communication, a party requesting service, generally
referred to as a client, blocks until a reply is sent back from the server implementing
the service. More specifically, we often see a communication pattern consisting of
many client-server interactions as may be the case with database transactions. This
approach generally works fine in LANs where communication between two machines
is often at worst a few 100 μs. However, in a wide-area system, we need to take
into account that interprocess communication may be hundreds of milliseconds, three
orders of magnitude slower. Building applications using synchronous communication
inwide-area systems requires a great deal of care (and not just a little patience), notably
with a rich interaction pattern between client and server.

Another problem that hinders geographical scalability is that communication in
wide-area networks is inherently much less reliable than in local-area networks. In
addition,we also need to dealwith limited bandwidth. The effect is that solutions devel-
oped for local-area networks cannot always be easily ported to a wide-area system. A
typical example is streamingvideo. In a homenetwork, evenwhenhavingonlywireless
links, ensuring a stable, fast stream of high-quality video frames from a media server
to a display is quite simple. Simply placing that same server far away and using a stan-
dardTCP connection to the displaywill surely fail: bandwidth limitationswill instantly
surface, but also maintaining the same level of reliability can easily cause headaches.

Yet another issue that pops up when components lie far apart is the fact that wide-
area systems generally have only very limited facilities for multipoint communication.
In contrast, local-area networks often support efficient broadcastingmechanisms. Such
mechanisms have proven to be extremely useful for discovering components and

123



982 M. van Steen, A. S. Tanenbaum

services, which is essential from a management point of view. In wide-area systems,
we need to develop separate services, such as naming and directory services to which
queries can be sent. These support services, in turn, need to be scalable as well and in
many cases no obvious solutions exist.

Administrative scalability Finally, a difficult, and in many cases open, question is how
to scale a distributed system across multiple, independent administrative domains. A
major problem that needs to be solved is that of conflicting policies with respect to
resource usage (and payment), management, and security.

To illustrate, for many years scientists have been looking for solutions to share
their (often expensive) equipment in what is known as a computational grid. In these
grids, a global distributed system is constructed as a federation of local distributed
systems, allowing a program running on a computer at organization A to directly
access resources at organization B.

For example, many components of a distributed system that reside within a single
domain can often be trusted by users that operate within that same domain. In such
cases, system administration may have tested and certified applications, and may have
taken special measures to ensure that such components cannot be tampered with. In
essence, the users trust their system administrators. However, this trust does not expand
naturally across domain boundaries.

If a distributed system expands to another domain, two types of security measures
need to be taken. First, the distributed system has to protect itself against malicious
attacks from the new domain. For example, users from the new domain may have
only read access to the file system in its original domain. Likewise, facilities such as
expensive imagesetters or high-performance computers may not be made available
to unauthorized users. Second, the new domain has to protect itself against malicious
attacks from the distributed system.A typical example is that of downloading programs
such as applets in Web browsers. Basically, the new domain does not know what to
expect from such foreign code, and may therefore decide to severely limit the access
rights for such code. The problem is how to enforce those limitations.

As a counter example of distributed systems spanning multiple administrative
domains that apparently do not suffer from administrative scalability problems, con-
sider modern file-sharing peer-to-peer networks. In these cases, end users simply
install a program implementing distributed search and download functions and within
minutes can start downloading files. Other examples include peer-to-peer applications
for telephony over the Internet such as Skype [10], and peer-assisted audio-streaming
applications such as earlier versions of Spotify [35]. What these distributed systems
have in common is that end users, and not administrative entities, collaborate to keep
the system up and running. At best, underlying administrative organizations such as
Internet Service Providers (ISPs) can police the network traffic that these peer-to-peer
systems cause, but so far such efforts have not been very effective.

Scaling techniques

Having discussed some of the scalability problems brings us to the question of how
those problems can generally be solved. In most cases, scalability problems in distrib-

123



A brief introduction to distributed systems 983

uted systems appear as performance problems caused by limited capacity of servers
and network. Simply improving their capacity (e.g., by increasing memory, upgrading
CPUs, or replacing network modules) is often a solution, referred to as scaling up.
When it comes to scaling out, that is, expanding the distributed system by essentially
deploying more machines, there are basically only three techniques we can apply:
hiding communication latencies, distribution of work, and replication.

Hiding communication latencies Hiding communication latencies is applicable in the
case of geographical scalability. The basic idea is simple: try to avoid waiting for
responses to remote-service requests as much as possible. For example, when a ser-
vice has been requested at a remote machine, an alternative to waiting for a reply from
the server is to do other useful work at the requester’s side. Essentially, this means
constructing the requesting application in such a way that it uses only asynchronous
communication. When a reply comes in, the application is interrupted and a special
handler is called to complete the previously issued request. Asynchronous commu-
nication can often be used in batch-processing systems and parallel applications in
which independent tasks can be scheduled for execution while another task is waiting
for communication to complete. Alternatively, a new thread of control can be started
to perform the request. Although it blocks waiting for the reply, other threads in the
process can continue.

However, there are many applications that cannot make effective use of asynchro-
nous communication. For example, in interactive applications when a user sends a
request he will generally have nothing better to do than to wait for the answer. In such
cases, a much better solution is to reduce the overall communication, for example, by
moving part of the computation that is normally done at the server to the client process
requesting the service. A typical case where this approach works is accessing data-
bases using forms. Filling in forms can be done by sending a separate message for each
field and waiting for an acknowledgement from the server, as shown in Fig. 3a. For
example, the server may check for syntactic errors before accepting an entry. A much

M
A

A
R

T
E

N

FIRST NAME
LAST NAME
E-MAIL

ServerClient

Check form Process form

MAARTEN

VAN STEEN

(a)

FIRST NAME
LAST NAME
E-MAIL

ServerClient

Check form Process form

MAARTEN
VAN STEEN

MAARTEN

VAN STEEN

(b)

Fig. 3 The difference between letting a a server or b a client check forms as they are being filled

123



984 M. van Steen, A. S. Tanenbaum

int com edu gov mil org net jp us nl

sun

eng

yale

eng

ai linda

robot

acm

jack jill

ieee

keio

cs

cs

pc24

co

nec

csl

oce vu

cs

flits fluit

ac

CountriesGeneric

Z1

Z2

Z3

Fig. 4 An example of dividing the (original) DNS name space into zones

better solution is to ship the code for filling in the form, and possibly checking the
entries, to the client, and have the client return a completed form, as shown in Fig. 3b.

Partitioning and distribution Another important scaling technique is partition and
distribution, which involves taking a component, splitting it into smaller parts, and
subsequently spreading those parts across the system. A good example of partition
and distribution is the Internet Domain Name System (DNS). The DNS name space is
hierarchically organized into a tree of domains, which are divided into nonoverlapping
zones, as shown for the original DNS in Fig. 4. The names in each zone are handled by
a single name server. Without going into too many details, now one can think of each
path name being the name of a host in the Internet, and is thus associatedwith a network
address of that host. Basically, resolving a name means returning the network address
of the associated host. Consider, for example, the name flits.cs.vu.nl. To resolve this
name, it is first passed to the server of zone Z1 (see Fig. 4) which returns the address
of the server for zone Z2, to which the rest of name, flits.cs.vu, can be handed. The
server for Z2 will return the address of the server for zone Z3, which is capable of
handling the last part of the name and will return the address of the associated host.

This example illustrates how the naming service, as provided byDNS, is distributed
across several machines, thus avoiding that a single server has to deal with all requests
for name resolution.

As another example, consider theWorldWideWeb. Tomost users, theWeb appears
to be an enormous document-based information system in which each document has
its own unique name in the form of a URL. Conceptually, it may even appear as if
there is only a single server. However, theWeb is physically partitioned and distributed
across a few 100million servers, each handling a number ofWeb documents. The name
of the server handling a document is encoded into that document’s URL. It is only
because of this distribution of documents that the Web has been capable of scaling to
its current size.

Replication Considering that scalability problems often appear in the form of per-
formance degradation, it is generally a good idea to actually replicate components
across a distributed system. Replication not only increases availability, but also helps

123



A brief introduction to distributed systems 985

to balance the load between components leading to better performance. Also, in geo-
graphically widely dispersed systems, having a copy nearby can hide much of the
communication latency problems mentioned before.

Caching is a special form of replication, although the distinction between the two
is often hard to make or even artificial. As in the case of replication, caching results
in making a copy of a resource, generally in the proximity of the client accessing that
resource. However, in contrast to replication, caching is a decision made by the client
of a resource and not by the owner of a resource.

There is one serious drawback to caching and replication that may adversely affect
scalability. Because we now have multiple copies of a resource, modifying one copy
makes that copy different from the others. Consequently, caching and replication leads
to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the usage of a
resource. For example, many Web users find it acceptable that their browser returns a
cached document of which the validity has not been checked for the last few minutes.
However, there are also many cases in which strong consistency guarantees need to be
met, such as in the case of electronic stock exchanges and auctions. The problem with
strong consistency is that an updatemust be immediately propagated to all other copies.
Moreover, if two updates happen concurrently, it is often also required that updates
are processed in the same order everywhere, introducing an additional global ordering
problem. To further aggravate problems, combining consistency with other desirable
properties such as availability may simply be impossible. The latter is illustrated by
the so-called CAP problem that states that combining consistency, availability, and
being tolerant to network partitions is not possible [16,24].

Replication therefore often requires some global synchronization mechanism.
Unfortunately, such mechanisms are extremely hard or even impossible to imple-
ment in a scalable way, if alone because network latencies have a natural lower bound.
Consequently, scaling by replicationmay introduce other, inherently nonscalable solu-
tions.

Discussion When considering these scaling techniques, one could argue that size
scalability is the least problematic from a technical point of view. In many cases,
increasing the capacity of a machine will save the day, although perhaps there is a high
monetary cost to pay. Geographical scalability is a much tougher problem as network
latencies are naturally bound from below. As a consequence, we may be forced to
copy data to locations close to where clients are, leading to problems of maintaining
copies consistent. Practice shows that combining distribution, replication, and caching
techniques with different forms of consistency generally leads to acceptable solutions.
Finally, administrative scalability seems to be themost difficult problem to solve, partly
because we need to deal with nontechnical issues, such as politics of organizations
and human collaboration. The introduction and now widespread use of peer-to-peer
technology has successfully demonstrated what can be achieved if end users are put
in control [39,47]. However, peer-to-peer networks are obviously not the universal
solution to all administrative scalability problems.

123



986 M. van Steen, A. S. Tanenbaum

3.5 Pitfalls

It should be clear by now that developing a distributed system is a formidable task.
There are somany issues to consider at the same time that it seems that only complexity
can be the result. Nevertheless, by following a number of design principles, distributed
systems can be developed that strongly adhere to the goals we set out in this paper.

Distributed systems differ from traditional software because components are dis-
persed across a network. Not taking this dispersion into account during design time is
what makes so many systems needlessly complex and results in flaws that need to be
patched later on. Peter Deutsch, at the time working at Sun Microsystems, formulated
these flaws as the following false assumptions that everyone makes when developing
a distributed application for the first time:

– The network is reliable
– The network is secure
– The network is homogeneous
– The topology does not change
– Latency is zero
– Bandwidth is infinite
– Transport cost is zero
– There is one administrator

Note how these assumptions relate to properties that are unique to distributed sys-
tems: reliability, security, heterogeneity, and topology of the network; latency and
bandwidth; transport costs; and finally administrative domains. When developing
nondistributed applications, most of these issues will most likely not show up.

4 Types of distributed systems

Let us take a closer look at the various types of distributed systems. We make a
distinction between distributed computing systems, distributed information systems,
and pervasive systems (which are naturally distributed).

4.1 High performance distributed computing

An important class of distributed systems is the one used for high-performance com-
puting tasks. Roughly speaking, one canmake a distinction between two subgroups. In
cluster computing the underlying hardware consists of a collection of similar work-
stations or PCs, closely connected by means of a high-speed local-area network. In
addition, each node runs the same operating system.

The situation becomes very different in the case of grid computing. This subgroup
consists of distributed systems that are often constructed as a federation of computer
systems, where each system may fall under a different administrative domain, and
may be very different when it comes to hardware, software, and deployed network
technology.

From the perspective of grid computing, a next logical step is to simply outsource
the entire infrastructure that is needed for compute-intensive applications. In essence,

123



A brief introduction to distributed systems 987

Shared memory Private memory

Processor Memory

P P P P

M M

P P P P

M M M M M

Interconnect

Interconnect

Fig. 5 Multiprocessor architecture compared to a multicomputer architecture

this is what cloud computing is all about: providing the facilities to dynamically
construct an infrastructure and composewhat is needed fromavailable services.Unlike
grid computing, which is strongly associatedwith high-performance computing, cloud
computing is much more than just providing lots of resources.

High-performance computing more or less started with the introduction of mul-
tiprocessor machines. In this case, multiple CPUs are organized in such a way that
they all have access to the same physical memory, as shown in Fig. 5a. In contrast, in a
multicomputer system several computers are connected through a network and there
is no sharing of main memory, as shown in Fig. 5b. There are different ways of accom-
plishing this shared access to main memory, but that is of less importance in light of
our discussion now. More important is that the shared-memory model proved to be
highly convenient for improving the performance of programs and it was relatively
easy to program.

The essence of shared-memory parallel programs is that multiple threads of control
are executing at the same time, while all threads have access to shared data. Access
to that data is controlled through well-understood synchronization mechanisms like
semaphores (see Ben-Ari [11] or Herlihy and Shavit [27] for more information on
developing parallel programs). Unfortunately, the model does not easily scale: so far,
machines have been developed in which only a few tens of CPUs have efficient access
to sharedmemory. To a certain extent, we are seeing the same limitations for multicore
processors, some of which are multiprocessors, but some of which are not.

To overcome the limitations of shared-memory systems, high-performance comput-
ing moved to distributed-memory systems. This shift also meant that many programs
had to make use of message passing instead of modifying shared data as a means
of communication and synchronization between threads. Unfortunately, message-
passing models have proven to be much more difficult and error-prone compared to
the shared-memory programming models. For this reason, there has been significant
research in attempting to build so-called distributed shared-memory multicomput-
ers, or simply DSM system [7].

In essence, a DSM system allows a processor to address a memory location at
another computer as if it were local memory. This can be achieved using existing tech-
niques available to the operating system, for example, by mapping all main-memory
pages of the various processors into a single virtual address space.Whenever a proces-
sorA addresses a page located at another processorB, a page fault occurs atA allowing
the operating system at A to fetch the content of the referenced page at B in the same

123



988 M. van Steen, A. S. Tanenbaum

way that it would normally fetch it locally from disk. At the same time, processor B
would be informed that the page is currently not accessible.

This elegant idea of mimicking shared-memory systems using multicomputers
eventually had to be abandoned for the simple reason that performance could never
meet the expectations of programmers, who would rather resort to far more intricate,
yet better (predictably) performing message-passing programming models.

An important side-effect of exploring the hardware-software boundaries of parallel
processing is a thorough understanding of consistency models.

Cluster computing

Cluster-computing systems became popular when the price/performance ratio of per-
sonal computers and workstations improved. At a certain point, it became financially
and technically attractive to build a supercomputer using off-the-shelf technology by
simply hooking up a collection of relatively simple computers in a high-speed network.
In virtually all cases, cluster computing is used for parallel programming in which a
single (compute intensive) program is run in parallel on multiple machines.

One widely applied example of a cluster computer is formed by Linux-based
Beowulf clusters, of which the general configuration is shown in Fig. 6. Each cluster
consists of a collection of compute nodes that are controlled and accessed by means
of a single master node. The master typically handles the allocation of nodes to a
particular parallel program, maintains a batch queue of submitted jobs, and provides
an interface for the users of the system. As such, the master actually runs the middle-
ware needed for the execution of programs and management of the cluster, while the
compute nodes are equipped with a standard operating system extended with typical
middleware functions for communication, storage, fault tolerance, and so on. Apart
from the master node, the compute nodes are thus seen to be highly identical.

An even more symmetric approach is followed in the MOSIX system [6]. MOSIX
attempts to provide a single-system image of a cluster, meaning that to a process a
cluster computer offers the ultimate distribution transparency by appearing to be a
single computer. As we mentioned, providing such an image under all circumstances
is impossible. In the case of MOSIX, the high degree of transparency is provided by
allowing processes to dynamically and preemptively migrate between the nodes that

Local OSLocal OS Local OS Local OS

Standard network

Component
of

parallel
application

Component
of

parallel
application

Component
of

parallel
applicationParallel libs

Management
application

High-speed network

Remote access
network

Master node Compute node Compute node Compute node

Fig. 6 An example of a cluster computing system

123



A brief introduction to distributed systems 989

Fig. 7 A layered architecture
for grid computing systems

Applications

Collective layer

Resource layer

Fabric layer

Connectivity layer

make up the cluster. Process migration allows a user to start an application on any node
(referred to as the home node), after which it can transparently move to other nodes,
for example, to make efficient use of resources. Similar approaches at attempting to
provide a single-system image are compared by Lottiaux et al. [38].

However, several modern cluster computers have been moving away from these
symmetric architectures to more hybrid solutions in which the middleware is func-
tionally partitioned across different nodes, as explained by Engelmann et al. [21].
The advantage of such a separation is obvious: having compute nodes with dedi-
cated, lightweight operating systems will most likely provide optimal performance
for compute-intensive applications. Likewise, storage functionality can most likely
be optimally handled by other specially configured nodes such as file and directory
servers. The same holds for other dedicated middleware services, including job man-
agement, database services, and perhaps general Internet access to external services.

Grid computing

A characteristic feature of traditional cluster computing is its homogeneity. In most
cases, the computers in a cluster are largely the same, have the same operating system,
and are all connected through the same network. However, as we just discussed, there
has been a trend towards more hybrid architectures in which nodes are specifically
configured for certain tasks. This diversity is even more prevalent in grid comput-
ing systems: no assumptions are made concerning similarity of hardware, operating
systems, networks, administrative domains, security policies, etc.

A key issue in a grid computing system is that resources from different organiza-
tions are brought together to allow the collaboration of a group of people from different
institutions, indeed forming a federation of systems. Such a collaboration is realized
in the form of a virtual organization. The processes belonging to the same virtual
organization have access rights to the resources that are provided to that organization.
Typically, resources consist of compute servers (including supercomputers, possibly
implemented as cluster computers), storage facilities, and databases. In addition, spe-
cial networked devices such as telescopes, sensors, etc., can be provided as well.

Given its nature, much of the software for realizing grid computing evolves around
providing access to resources from different administrative domains, and to only those
users and applications that belong to a specific virtual organization. For this reason,
focus is often on architectural issues. An architecture initially proposed by Foster et
al. [22] is shown in Fig. 7, which still forms the basis formany grid computing systems.

123



990 M. van Steen, A. S. Tanenbaum

The architecture consists of four layers. The lowest fabric layer provides interfaces
to local resources at a specific site. Note that these interfaces are tailored to allow shar-
ing of resources within a virtual organization. Typically, they will provide functions
for querying the state and capabilities of a resource, along with functions for actual
resource management (e.g., locking resources).

The connectivity layer consists of communication protocols for supporting grid
transactions that span the usage of multiple resources. For example, protocols are
needed to transfer data between resources, or to simply access a resource from a
remote location. In addition, the connectivity layer will contain security protocols
to authenticate users and resources. Note that in many cases human users are not
authenticated; instead, programs acting on behalf of the users are authenticated. In
this sense, delegating rights from a user to programs is an important function that
needs to be supported in the connectivity layer.

The resource layer is responsible for managing a single resource. It uses the func-
tions provided by the connectivity layer and calls directly the interfacesmade available
by the fabric layer. For example, this layer will offer functions for obtaining configu-
ration information on a specific resource, or, in general, to perform specific operations
such as creating a process or reading data. The resource layer is thus seen to be respon-
sible for access control, and hence will rely on the authentication performed as part
of the connectivity layer.

The next layer in the hierarchy is the collective layer. It dealswith handling access to
multiple resources and typically consists of services for resource discovery, allocation
and scheduling of tasks onto multiple resources, data replication, and so on. Unlike
the connectivity and resource layer, each consisting of a relatively small, standard
collection of protocols, the collective layer may consist of many different protocols
reflecting the broad spectrum of services it may offer to a virtual organization.

Finally, the application layer consists of the applications that operate within a
virtual organization and which make use of the grid computing environment.

Typically the collective, connectivity, and resource layer form the heart of what
could be called a grid middleware layer. These layers jointly provide access to and
management of resources that are potentially dispersed across multiple sites.

An important observation from a middleware perspective is that in grid computing
the notion of a site (or administrative unit) is common. This prevalence is emphasized
by the gradual shift toward a service-oriented architecture in which sites offer access
to the various layers through a collection of Web services [33]. This, by now, has lead
to the definition of an alternative architecture known as the Open Grid Services
Architecture (OGSA) [23]. OGSA is based upon the original ideas as formulated by
Foster et al. [22], yet having gone through a standardization process makes it complex,
to say the least. OGSA implementations generally follow Web service standards.

Cloud computing

While researchers were pondering on how to organize computational grids that were
easily accessible, organizations in charge of running data centers were facing the
problemof opening up their resources to customers. Eventually, this lead to the concept
of utility computing by which a customer could upload tasks to a data center and be

123



A brief introduction to distributed systems 991

Application

Infrastructure

Computation (VM) torage (block ), 

Hardware

Platforms

Software framework (Java/Python/.Net)
Storage ( )databases

In
fra

st
ru

ct
ur

e
cv

S
aa

mr oftal
P

cv
S

aa
era

wtfo
S

cv
S

aa
MS Azure
Google App engine

Amazon S3
Amazon EC2

DatacentersCPU, memory, disk, bandwidth

Web services, multimedia, business apps
Google docs
Gmail
YouTube, Flickr

Fig. 8 The organization of clouds (adapted from [67])

charged on a per-resource basis. Utility computing formed the basis for what is now
called cloud computing.

Following Vaquero et al. [61], cloud computing is characterized by an easily usable
and accessible pool of virtualized resources. Which and how resources are used can
be configured dynamically, providing the basis for scalability: if more work needs to
be done, a customer can simply acquire more resources. The link to utility computing
is formed by the fact that cloud computing is generally based on a pay-per-use model
in which guarantees are offered by means of customized service level agreements
(SLAs).

In practice, clouds are organized into four layers, as shown in Fig. 8 (see also Zhang
et al. [67]):

HardwareThe lowest layer is formed by themeans to manage the necessary hardware:
processors, routers, but also power and cooling systems. It is generally implemented
at data centers and contains the resources that customers normally never get to see
directly.

Infrastructure This is an important layer forming the backbone for most cloud
computing platforms. It deploys virtualization techniques to provide customers an
infrastructure consisting of virtual storage and computing resources. Indeed, nothing
is what it seems: cloud computing evolves around allocating and managing virtual
storage devices and virtual servers.

Platform One could argue that the platform layer provides to a cloud-computing cus-
tomer what an operating system provides to application developers, namely the means
to easily develop and deploy applications that need to run in a cloud. In practice, an
application developer is offered a vendor-specific API, which includes calls to upload-
ing and executing a program in that vendor’s cloud. In a sense, this is comparable the
Unix exec family of system calls, which take an executable file as parameter and pass
it to the operating system to be executed.

Also like operating systems, the platform layer provides higher-level abstractions
for storage and such. For example, as we discuss in more detail later, the Amazon
S3 storage system [44] is offered to the application developer in the form of an API
allowing (locally created) files to be organized and stored in buckets. A bucket is some-

123



992 M. van Steen, A. S. Tanenbaum

what comparable to a directory. By storing a file in a bucket, that file is automatically
uploaded to the Amazon cloud.

Application Actual applications run in this layer and are offered to users for further
customization.Well-known examples include those found in office suites (text proces-
sors, spreadsheet applications, presentation applications, and so on). It is important
to realize that these applications are again executed in the vendor’s cloud. As before,
they can be compared to the traditional suite of applications that are shipped when
installing an operating system.

Cloud-computing providers offer these layers to their customers through various
interfaces (including command-line tools, programming interfaces, and Web inter-
faces), leading to three different types of services:

– Infrastructure-as-a-Service (IaaS) covering hardware and infrastructure layer
– Platform-as-a-Service (PaaS) covering the platform layer
– Software-as-a-Service (SaaS) in which their applications are covered

As of now,making use of clouds is relatively easy. As a consequence, cloud computing
as ameans for outsourcing local computing infrastructures has become a serious option
for many enterprises. However, there are still a number of serious obstacles including
provider lock-in, security and privacy issues, and dependency on the availability of
services, to mention a few (see also Armbrust et al. [8]). Also, because the details on
how specific cloud computations are actually carried out are generally hidden, and even
perhaps unknown or unpredictable, meeting performance demands may be impossible
to arrange in advance. On top of this, Li et al. [37] have shown that different providers
may easily show very different performance profiles. Cloud computing is no longer a
hype, and certainly a serious alternative to maintaining huge local infrastructures, yet
there is still a lot of room for improvement.

4.2 Distributed information systems

Another important class of distributed systems is found in organizations that were
confronted with a wealth of networked applications, but for which interoperability
turned out to be a painful experience. Many of the existing middleware solutions
are the result of working with an infrastructure in which it was easier to integrate
applications into an enterprise-wide information system [5,12,28].

We can distinguish several levels at which integration can take place. In many
cases, a networked application simply consists of a server running that application
(often including a database) andmaking it available to remote programs, called clients.
Such clients send a request to the server for executing a specific operation, after which
a response is sent back. Integration at the lowest level allows clients to wrap a number
of requests, possibly for different servers, into a single larger request and have it exe-
cuted as a distributed transaction. The key idea is that all, or none of the requests
are executed.

As applications becamemore sophisticated and were gradually separated into inde-
pendent components (notably distinguishing database components from processing
components), it became clear that integration should also take place by letting appli-

123



A brief introduction to distributed systems 993

Table 2 Example primitives for transactions

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

cations communicate directly with each other. This has now lead to a huge industry
that concentrates on Enterprise Application Integration (EAI).

Distributed transaction processing

To clarify our discussion, we concentrate on database applications. In practice, oper-
ations on a database are carried out in the form of transactions. Programming using
transactions requires special primitives that must either be supplied by the underlying
distributed system or by the language runtime system. Typical examples of transaction
primitives are shown in Table 2. The exact list of primitives depends on what kinds
of objects are being used in the transaction [13,25]. In a mail system, there might be
primitives to send, receive, and forward mail. In an accounting system, they might
be quite different. READ andWRITE are typical examples, however. Ordinary state-
ments, procedure calls, and so on, are also allowed inside a transaction. In particular,
remote procedure calls (RPCs), that is, procedure calls to remote servers, are often
also encapsulated in a transaction, leading to what is known as a transactional RPC.

BEGIN_TRANSACTION and END_TRANSACTION are used to delimit the
scope of a transaction. The operations between them form the body of the transaction.
The characteristic feature of a transaction is either all of these operations are executed
or none are executed. These may be system calls, library procedures, or bracketing
statements in a language, depending on the implementation.

This all-or-nothing property of transactions is one of the four characteristic prop-
erties that transactions have. More specifically, transactions adhere to the so-called
ACID properties:

– Atomic To the outside world, the transaction happens indivisibly
– Consistent The transaction does not violate system invariants
– Isolated Concurrent transactions do not interfere with each other
– Durable Once a transaction commits, the changes are permanent

In distributed systems, transactions are often constructed as a number of sub-
transactions, jointly forming a nested transaction as shown in Fig. 9. The top-level
transaction may fork off children that run in parallel with one another, on different
machines, to gain performance or simplify programming. Each of these children may
also execute one or more subtransactions, or fork off its own children.

Subtransactions give rise to a subtle, but important, problem. Imagine that a trans-
action starts several subtransactions in parallel, and one of these commits, making its

123



994 M. van Steen, A. S. Tanenbaum

Fig. 9 A nested transaction

Airline database Hotel database

Subtransaction Subtransaction

Nested transaction

Two different (independent) databases

results visible to the parent transaction. After further computation, the parent aborts,
restoring the entire system to the state it had before the top-level transaction started.
Consequently, the results of the subtransaction that committed must nevertheless be
undone. Thus the permanence referred to above applies only to top-level transac-
tions.

Since transactions can be nested arbitrarily deep, considerable administration is
needed to get everything right. The semantics are clear, however.When any transaction
or subtransaction starts, it is conceptually given a private copy of all data in the entire
system for it to manipulate as it wishes. If it aborts, its private universe just vanishes,
as if it had never existed. If it commits, its private universe replaces the parent’s
universe. Thus if a subtransaction commits and then later a new subtransaction is
started, the second one sees the results produced by the first one. Likewise, if an
enclosing (higher level) transaction aborts, all its underlying subtransactions have to
be aborted as well. And if several transactions are started concurrently, the result is as
if they ran sequentially in some unspecified order.

Nested transactions are important in distributed systems, for they provide a natural
way of distributing a transaction across multiple machines. They follow a logical
division of the work of the original transaction. For example, a transaction for planning
a trip by which three different flights need to be reserved can be logically split up into
three subtransactions. Each of these subtransactions can be managed separately and
independently of the other two.

In the early days of enterprise middleware systems, the component that handled
distributed (or nested) transactions formed the core for integrating applications at
the server or database level. This component was called a transaction processing
monitor or TP monitor for short. Its main task was to allow an application to access
multiple server/databases by offering it a transactional programming model, as shown
in Fig. 10. Essentially, the TPmonitor coordinated the commitment of subtransactions
following a standard protocol known as distributed commit.

An important observation is that applications wanting to coordinate several sub-
transactions into a single transaction did not have to implement this coordination
themselves. By simply making use of a TP monitor, this coordination was done for
them. This is exactly where middleware comes into play: it implements services that
are useful for many applications avoiding that such services have to be reimplemented
over and over again by application developers.

123



A brief introduction to distributed systems 995

TP monitor

Server

Server

Server

Client
application

Requests

Reply

Request

Request

Request

Reply

Reply

Reply

Transaction

Fig. 10 The role of a TP monitor in distributed systems

Server-side
application

Server-side
application

Server-side
application

Client
application

Client
application

Communication middleware

Fig. 11 Middleware as a communication facilitator in enterprise application integration

Enterprise application integration

As mentioned, the more applications became decoupled from the databases they were
built upon, the more evident it became that facilities were needed to integrate applica-
tions independently from their databases. In particular, application components should
be able to communicate directly with each other and not merely by means of the
request/reply behavior that was supported by transaction processing systems.

This need for interapplication communication led to many different communica-
tion models. The main idea was that existing applications could directly exchange
information, as shown in Fig. 11.

Several types of communication middleware exist. With remote procedure calls
(RPC), an application component can effectively send a request to another application
component by doing a local procedure call, which results in the request being packaged
as a message and sent to the callee. Likewise, the result will be sent back and returned
to the application as the result of the procedure call.

As the popularity of object technology increased, techniques were developed to
allow calls to remote objects, leading to what is known as remotemethod invocations
(RMI). An RMI is essentially the same as an RPC, except that it operates on objects
instead of functions.

123



996 M. van Steen, A. S. Tanenbaum

RPC andRMI have the disadvantage that the caller and callee both need to be up and
running at the time of communication. In addition, they need to know exactly how to
refer to each other. This tight coupling is often experienced as a serious drawback, and
has lead to what is known asmessage-orientedmiddleware, or simplyMOM. In this
case, applications send messages to logical contact points, often described by means
of a subject. Likewise, applications can indicate their interest for a specific type of
message, afterwhich the communicationmiddlewarewill take care that thosemessages
are delivered to those applications. These so-called publish/subscribe systems form
an important and expanding class of distributed systems.

Supporting enterprise application integration is an important goal for many mid-
dleware products. In general, there are four ways to integrate applications [28]:

File transfer The essence of integration through file transfer, is that an application
produces a file containing shared data that is subsequently read by other applications.
The approach is technically very simple, making it appealing. The drawback, however,
is that there are a lot of things that need to be agreed upon:

– File format and layout Text, binary, its structure, and so on. Nowadays, XML has
become popular as its files are, in principle, self-describing.

– File management where are they stored, how are they named, who is responsible
for deleting files?

– Update propagation When an application produces a file, there may be several
applications that need to read that file in order to provide the view of a single
coherent system. As a consequence, sometimes separate programs need to be
implemented that notify applications of file updates.

Shared database Many of the problems associated with integration through files are
alleviated when using a shared database. All applications will have access to the same
data, and often through a high-level language such as SQL. Also, it is easy to notify
applications when changes occur, as triggers are often part of modern databases. There
are, however, two major drawbacks. First, there is still a need to design a common
data schema, which may be far from trivial if the set of applications that need to be
integrated is not completely known in advance. Second, when there are many reads
and updates, a shared database can easily become a performance bottleneck.

Remote procedure call Integration through files or a database implicitly assumes
that changes by one application can easily trigger other applications to take action.
However, practice shows that sometimes small changes should actually trigger many
applications to take actions. In such cases, it is not really the change of data that is
important, but the execution of a series of actions.

Series of actions are best captured through the execution of a procedure (whichmay,
in turn, lead to all kinds of changes in shared data). To prevent that every application
needs to know all the internals of those actions (as implemented by another applica-
tion), standard encapsulation techniques should be used, as deployed with traditional
procedure calls or object invocations. For such situations, an application can best offer
a procedure to other applications in the form of a remote procedure call, or RPC. In

123



A brief introduction to distributed systems 997

essence, an RPC allows an applicationA to make use of the information available only
to application B, without giving A direct access to that information.

MessagingAmain drawback ofRPCs is that caller and callee need to be up and running
at the same time in order for the call to succeed. However, inmany scenarios this simul-
taneously activity is often difficult or impossible to guarantee. In such cases, offering a
messaging system carrying requests from application A to perform an action at appli-
cation B, is what is needed. The messaging system ensures that eventually the request
is delivered, and if needed, that a response is eventually returned as well. Obviously,
messaging is not the panacea for application integration: it also introduces problems
concerning data formatting and layout, it requires an application to knowwhere to send
a message to, there need to be scenarios for dealing with lost messages, and so on.

What these four approaches tell us, is that application integration will generally
not be simple. Middleware (in the form of a distributed system), however, can signifi-
cantly help in integration by providing the right facilities such as support for RPCs or
messaging. As said, enterprise application integration is an important target field for
many middleware products.

4.3 Pervasive systems

The distributed systems discussed so far are largely characterized by their stability:
nodes are fixed and have a more or less permanent and high-quality connection to a
network. To a certain extent, this stability is realized through the various techniques
for achieving distribution transparency. For example, there are many ways how we
can create the illusion that only occasionally components may fail. Likewise, there are
all kinds of means to hide the actual network location of a node, effectively allowing
users and applications to believe that nodes stay put.

However, matters have changed since the introduction of mobile and embedded
computing devices, leading to what are generally referred to as pervasive systems.
As its name suggests, pervasive systems are intended to naturally blend into our envi-
ronment. They are naturally also distributed systems. What makes them unique in
comparison to the computing and information systems described so far, is that the
separation between users and system components is much more blurred. There is
often no single dedicated interface, such as a screen/keyboard combination. Instead, a
pervasive system is often equipped with many sensors that pick up various aspects of
a user’s behavior. Likewise, it may have a myriad of actuators to provide information
and feedback, often even purposefully aiming to steer behavior.

Many devices in pervasive systems are characterized by being small, battery-
powered, mobile, and having only a wireless connection, although not all these
characteristics apply to all devices. These are not necessarily restrictive character-
istics, as is illustrated by smartphones [51]. Nevertheless, notably the fact that we
often need to deal with the intricacies of wireless and mobile communication, will
require special solutions to make a pervasive system as transparent or unobtrusive as
possible.

In the following, we make a distinction between three different types of pervasive
systems, although there is considerable overlap between the three types: ubiquitous

123



998 M. van Steen, A. S. Tanenbaum

computing systems, mobile systems, and sensor networks. This distinction allows us
to focus on different aspects of pervasive systems.

Ubiquitous computing systems

So far, we have been talking about pervasive systems to emphasize that its elements
have spread through in many parts of our environment. In a ubiquitous computing
system we go one step further: the system is pervasive and continuously present.
The latter means that a user will be continuously interacting with the Poslad system,
often not even being aware that interaction is taking place. [50] describes the core
requirements for a ubiquitous computing system roughly as follows:

1. (Distribution) Devices are networked, distributed, and accessible in a transparent
manner

2. (Interaction) Interaction between users and devices is highly unobtrusive
3. (Context awareness) The system is aware of a user’s context in order to optimize

interaction
4. (Autonomy) Devices operate autonomously without human intervention, and are

thus highly self-managed
5. (Intelligence) The system as a whole can handle a wide range of dynamic actions

and interactions

Let us briefly consider these requirements from a distributed-systems perspective.

Ad. 1: distribution As mentioned, a ubiquitous computing system is an example of a
distributed system: the devices and other computers forming the nodes of a system
are simply networked and work together to form the illusion of a single coherent
system. Distribution also comes naturally: there will be devices close to users (such
as sensors and actuators), connected to computers hidden from view and perhaps even
operating remotely in a cloud.Most, if not all of the requirements regarding distribution
transparency should therefore hold.

Ad. 2: interaction When it comes to interaction with users, ubiquitous computing
systems differ a lot in comparison to the systems we have been discussing so far. End
users play a prominent role in the design of ubiquitous systems, meaning that special
attention needs to be paid to how the interaction between users and core system takes
place. For ubiquitous computing systems, much of the interaction by humans will be
implicit, with an implicit action being defined as one “that is not primarily aimed to
interact with a computerized system but which such a system understands as input”
[52]. In other words, a user could be mostly unaware of the fact that input is being
provided to a computer system. From a certain perspective, ubiquitous computing can
be said to seemingly hide interfaces.

A simple example is where the settings of a car’s driver’s seat, steering wheel, and
mirrors is fully personalized. If Bob takes a seat, the system will recognize that it
is dealing with Bob and subsequently makes the appropriate adjustments. The same
happens when Alice uses the car, while an unknown user will be steered toward
making his or her own adjustments (to be remembered for later). This example already
illustrates an important role of sensors in ubiquitous computing, namely as input

123



A brief introduction to distributed systems 999

devices that are used to identify a situation (a specific person apparently wanting to
drive), whose input analysis leads to actions (making adjustments). In turn, the actions
may lead to natural reactions, for example that Bob slightly changes the seat settings.
The system will have to take all (implicit and explicit) actions by the user into account
and react accordingly.

Ad. 3: context awarenessReacting to the sensory input, but also the explicit input from
users is more easily said than done. What a ubiquitous computing system needs to do,
is to take the context in which interactions take place into account. Context awareness
also differentiates ubiquitous computing systems from the more traditional systems
we have been discussing before, and is described by Dey and Abowd [18] as “any
information that can be used to characterize the situation of entities (i.e., whether a
person, place or object) that are considered relevant to the interaction between a user
and an application, including the user and the application themselves.” In practice,
context is often characterized by location, identity, time, and activity: the where, who,
when, andwhat. A systemwill need to have the necessary (sensory) input to determine
one or several of these context types.

What is important from a distributed-systems perspective, is that raw data as
collected by various sensors is lifted to a level of abstraction that can be used by
applications. A concrete example is detecting where a person is, for example in terms
of GPS coordinates, and subsequently mapping that information to an actual location,
such as the corner of a street, or a specific shop or other known facility. The question
is where this processing of sensory input takes place: is all data collected at a central
server connected to a database with detailed information on a city, or is it the user’s
smartphone where the mapping is done? Clearly, there are trade-offs to be considered.

Dey [17] discusses more general approaches toward building context-aware appli-
cations. When it comes to combining flexibility and potential distribution, so-called
shared data spaces in which processes are decoupled in time in space are attractive,
yet suffer from scalability problems. A survey on context-awareness and its relation
to middleware and distributed systems is provided by Baldauf et al. [9].

Ad. 4: autonomy An important aspect of most ubiquitous computing systems is that
explicit systems management has been reduced to a minimum. In a ubiquitous com-
puting environment there is simply no room for a systems administrator to keep
everything up and running. As a consequence, the system as a whole should be able
to act autonomously, and automatically react to changes. This requires a myriad of
techniques. To give a few simple examples, think of the following:

Address allocation In order for networked devices to communicate, they need an IP
address. Addresses can be allocated automatically using protocols like the Dynamic
Host Configuration Protocol (DHCP) [19] (which requires a server) or Zeroconf [26].

Adding devices It should be easy to add devices to an existing system. A step
towards automatic configuration is realized by the Universal Plug and Play Pro-

123



1000 M. van Steen, A. S. Tanenbaum

tocol (UPnP) [58]. Using UPnP, devices can discover each other and make sure that
they can set up communication channels between them.

Automatic updatesMany devices in a ubiquitous computing system should be able to
regularly check through the Internet if their software should be updated. If so, they
can download new versions of their components and ideally continue where they left
off.

Admittedly, these are very simple examples, but the picture should be clear that
manual intervention is to be kept to a minimum.

Ad. 5: intelligence Finally, Poslad [50] mentions that ubiquitous computing systems
often use methods and techniques from the field of artificial intelligence. What this
means, is that inmany cases awide range of advanced algorithms andmodels need to be
deployed to handle incomplete input, quickly react to a changing environment, handle
unexpected events, and so on. The extent to which this can or should be done in a dis-
tributed fashion is crucial from the perspective of distributed systems. Unfortunately,
distributed solutions for many problems in the field of artificial intelligence are yet to
be found, meaning that there may be a natural tension between the first requirement of
networked and distributed devices, and advanced distributed information processing.

Mobile computing systems

As mentioned, mobility often forms an important component of pervasive systems,
andmany, if not all aspects that we have just discussed also apply tomobile computing.
There are several issues that setmobile computing aside to pervasive systems in general
(see also Adelstein et al. [1] and Tarkoma and Kangasharju [56])

First, the devices that form part of a (distributed) mobile system may vary widely.
Typically, mobile computing is now done with devices such as smartphones and tablet
computers. However, that completely different types of devices are now using the
Internet Protocol (IP) to communicate, placing mobile computing in a different per-
spective. Such devices include remote controls, pagers, active badges, car equipment,
various GPS-enabled devices, and so on. A characteristic feature of all these devices is
that they use wireless communication. Mobile implies wireless so it seems (although
there are exceptions to the rules).

Second, in mobile computing the location of a device is assumed to change over
time. A changing location has its effects on many issues. For example, if the location
of a device changes regularly, so will perhaps the services that are locally available.
As a consequence, we may need to pay special attention to dynamically discovering
services, but also letting services announce their presence. In a similar vein, we often
also want to know where a device actually is. This may mean that we need to know the
actual geographical coordinates of a device such as in tracking and tracing applications,
but it may also require that we are able to simply detect its network position (as in
mobile IP [48,49].

Changing locations also has a profound effect on communication. To illustrate,
consider a (wireless) mobile ad hoc network, generally abbreviated as a MANET.
Suppose that two devices in a MANET have discovered each other in the sense that
they know each other’s network address. How do we route messages between the two?

123



A brief introduction to distributed systems 1001

Source

Message passing

Move

N1

N2

N2

N3

N3

N1

Destination

Fig. 12 Passing messages in a (mobile) disruption-tolerant network

Static routes are generally not sustainable as nodes along the routing path can easily
move out of their neighbor’s range, invalidating the path. For large MANETs, using a
priori set-up paths is not a viable option. What we are dealing with here are so-called
disruption-tolerant networks: networks in which connectivity between two nodes
can simply not be guaranteed. Getting a message from one node to another may then
be problematic, to say the least.

The trick in such cases, is not to attempt to set up a communication path from the
source to the destination, but to rely on two principles. First, using special flooding-
based techniques will allow a message to gradually spread through a part of the
network, to eventually reach the destination. Obviously, any type of flooding will
impose redundant communication, but this may be the price we have to pay. Second,
in a disruption-tolerant network, we let an intermediate node store a received message
until it encounters another node to which it can pass it on. In other words, a node
becomes a temporary carrier of a message, as sketched in Fig. 12. Eventually, the
message should reach its destination.

It is not difficult to imagine that selectively passing messages to encountered nodes
may help to ensure efficient delivery. For example, if nodes are known to belong to a
certain class, and the source and destination belong to the same class, we may decide
to pass messages only among nodes in that class. Likewise, it may prove efficient to
pass messages only to well-connected nodes, that is, nodes who have been in range
of many other nodes in the recent past. An overview is provided by Spyropoulos et
al. [54].

Not surprisingly, mobile computing is tightly coupled to the whereabouts of human
beings. With the increasing interest in complex social networks [32,62] and the explo-
sion of the use of smartphones, several groups are seeking to combine analysis of social
behavior and information dissemination in so-called pocket switched networks [29].
The latter are networks in which nodes are formed by people (or actually, their mobile
devices), and links are formed when two people encounter each other, allowing their
devices to exchange data.

The basic idea is to let information be spread using the ad hoc communications
between people. In doing so, it becomes important to understand the structure of a
social group. One of the first to examine how social awareness can be exploited in
mobile networks wereMiklas et al. [42]. In their approach, based on traces on encoun-
ters between people, two people are characterized as either friends or strangers. Friends
interact frequently, where the number of recurring encounters between strangers is low.
The goal is to make sure that a message from Alice to Bob is eventually delivered.

123



1002 M. van Steen, A. S. Tanenbaum

As it turns out, when Alice adopts a strategy by which she hands out the message to
each of her friends, and that each of those friends passes the message to Bob as soon
as he is encountered, can ensure that the message reaches Bob with a delay exceeding
approximately 10 % of the best-attainable delay. Any other strategy, like forwarding
the message to only one or two friends, performs much worse. Passing a message to a
stranger has no significant effect. In other words, it makes a huge difference if nodes
take friend relationships into account, but even then it is still necessary to judiciously
adopt a forwarding strategy.

For large groups of people, more sophisticated approaches are needed. In the first
place, it may happen that messages need to be sent between people in different com-
munities. What do we mean by a community? If we consider a social network (where
a vertex represents a person, and a link the fact that two people have a social relation),
then a community is roughly speaking a group of vertices inwhich there aremany links
between its members and only few links with vertices in other groups [46]. Unfor-
tunately, many community-detection algorithms require complete information on the
social structure, making them practically infeasible for optimizing communication in
mobile networks. A few decentralized solutions are proposed by Hui et al. [30].

A general observation by many is that people tend to stay put. In fact, further
analysis revealed that people tend to return to the same place after 24, 48, or 72 h,
clearly showing that people tend to go to the same places. Song et al. [53] show that
human mobility is actually remarkably well predictable.

Sensor networks

Our last example of pervasive systems is sensor networks. These networks in many
cases form part of the enabling technology for pervasiveness and we see that many
solutions for sensor networks return in pervasive applications. What makes sensor
networks interesting from a distributed system’s perspective is that they are more
than just a collection of input devices. Instead, sensor nodes often collaborate to
efficiently process the sensed data in an application-specific manner, making them
very different from, for example, traditional computer networks. Akyildiz et al. [3]
and Akyildiz et al. [4] provide an overview from a networking perspective. A more
systems-oriented introduction to sensor networks is given by Zhao and Guibas [68]
and Karl and Willig [34].

A sensor network generally consists of tens to hundreds or thousands of relatively
small nodes, each equipped with one or more sensing devices. In addition, nodes can
often act as actuators [2], a typical example being the automatic activation of sprinklers
when a fire has been detected. Most sensor networks use wireless communication, and
the nodes are often battery powered. Their limited resources, restricted communication
capabilities, and constrained power consumption demand that efficiency is high on the
list of design criteria.

When zooming into an individual node, we see that, conceptually, they do not
differ a lot from “normal” computers: above the hardware there is a software layer
akin to what traditional operating systems offer, including low-level network access,
access to sensors and actuators, memory management, and so on. Normally, support
for specific services is included, such as localization, local storage (think of additional

123



A brief introduction to distributed systems 1003

flash devices), and convenient communication facilities such asmessaging and routing.
However, similar to other networked computer systems, additional support is needed
to effectively deploy sensor network applications. In distributed systems, this takes
the form of middleware. For sensor networks, instead of looking at middleware, it is
better to seewhat kind of programming support is provided,which has been extensively
surveyed by Mottola and Picco [43].

One typical aspect in programming support is the scope provided by communication
primitives. This scope can vary between addressing the physical neighborhood of a
node, and providing primitives for systemwide communication. In addition, it may
also be possible to address a specific group of nodes. Likewise, computations may be
restricted to an individual node, a group of nodes, or affect all nodes. To illustrate,
Welsh and Mainland [66] use so-called abstract regions allowing a node to identify a
neighborhood fromwhere it can, for example, gather information in the followingway:

region = k_nearest_region . create (8);
reading = get_sensor_reading ( ) ;
region . putvar(reading_key , reading ) ;
max_id = region . reduce(OP_MAXID, reading_key ) ;

In line 1, a nodefirst creates a region of its eight nearest neighbors, afterwhich it fetches
a value from its sensor(s). This reading is subsequentlywritten to the previously defined
region to be defined using the key reading_key. In line 4, the node checks whose
sensor reading in the defined region was the largest, which is returned in the variable
max_id.

As another related example, consider a sensor network as implementing a distrib-
uted database, which is, according toMottola and Picco [43], one of four possibleways
of accessing data. This database view is quite common and easy to understand when
realizing that many sensor networks are deployed for measurement and surveillance
applications [15]. In these cases, an operator would like to extract information from (a
part of) the network by simply issuing queries such as “What is the northbound traffic
load on highway 1 at Santa Cruz?” Such queries resemble those of traditional data-
bases. In this case, the answer will probably need to be provided through collaboration
of many sensors along highway 1, while leaving other sensors untouched.

To organize a sensor network as a distributed database, there are essentially two
extremes, as shown in Fig. 13. First, sensors do not cooperate but simply send their
data to a centralized database located at the operator’s site. The other extreme is to
forward queries to relevant sensors and to let each compute an answer, requiring the
operator to sensibly aggregate the returned answers.

Neither of these solutions is very attractive. The first one requires that sensors send
all their measured data through the network, which may waste network resources
and energy. The second solution may also be wasteful as it discards the aggregation
capabilities of sensors whichwould allowmuch less data to be returned to the operator.
What is needed are facilities for in-network data processing, similar to the previous
example of abstract regions.

In-networkprocessing canbedone in numerousways.Oneobvious one is to forward
a query to all sensor nodes along a tree encompassing all nodes and to subsequently
aggregate the results as they are propagated back to the root, where the initiator is

123



1004 M. van Steen, A. S. Tanenbaum

Operator's site

Sensor network

Sensor data
is sent directly

to operator

(a)

Operator's site

Sensor network

Query

Sensors
send only
answers

Each sensor
can process and

store data

(b)

Fig. 13 Organizing a sensor network database, while storing and processing data a only at the operator’s
site or b only at the sensors

located. Aggregation will take place where two or more branches of the tree come
together. As simple as this scheme may sound, it introduces difficult questions:

– How do we (dynamically) set up an efficient tree in a sensor network?
– How does aggregation of results take place? Can it be controlled?
– What happens when network links fail?

These questions have been partly addressed in TinyDB, which implements a declar-
ative (database) interface to wireless sensor networks [40]. In essence, TinyDB can use
any tree-based routing algorithm. An intermediate node will collect and aggregate the
results from its children, along with its own findings, and send that toward the root. To
make matters efficient, queries span a period of time allowing for careful scheduling
of operations so that network resources and energy are optimally consumed.

However, when queries can be initiated from different points in the network, using
single-rooted trees such as in TinyDB may not be efficient enough. As an alternative,
sensor networks may be equipped with special nodes where results are forwarded to,
as well as the queries related to those results. To give a simple example, queries and
results related to temperature readings may be collected at a different location than
those related to humidity measurements. This approach corresponds directly to the
notion of publish/subscribe systems.

As mentioned, many sensor networks need to operate on an energy budget coming
from the use of batteries or other limited power supplies. An approach to reduce energy
consumption, is to let nodes be active only part of the time. More specifically, assume
that a node is repeatedly active during Tactive time units, and between these active
periods, it is suspended for Tsuspended units. The fraction of time that a node is active
is known as its duty cycle τ , that is,

123



A brief introduction to distributed systems 1005

τ = Tactive
Tactive + Tsuspended

Values for τ are typically in the order of 10−30 %, but when a network needs to stay
operational for periods exceeding many months, or even years, attaining values as low
as 1 % are critical.

A problemwith duty-cycled networks is that, in principle, nodes need to be active at
the same time for otherwise communicationwould simply not be possible. Considering
that while a node is suspended, only its local clock continues ticking, and that these
clocks are subject to drifts, waking up at the same time may be problematic. This is
particularly true for networks with very low duty cycles.

When a group of nodes are active at the same time, the nodes are said to form a
synchronized group. There are essentially two problems that need to be addressed.
First, we need to make sure that the nodes in a synchronized group remain active at the
same time. In practice, this turns out to be relatively simple if each node communicates
information on its current local time. Then, simple local clock adjustments will do the
trick. The second problem is more difficult, namely how two different synchronized
groups can be merged into one in which all nodes are synchronized. By judiciously
sending, and reacting to join messages [63] come to a highly efficient solution for
networks that scale up to thousands of mobile nodes while maintaining a duty cycle
of less than 1 %.

5 Outlook

In this paper we have given a state-of-affairs overview of distributed systems: this
is where we are today, understand well, and have successfully realized and more
or less know how to maintain and keep up-and-running on a daily basis. It is the
achievement of decades of research and development in distributed systems. Yet,
there are considerable challenges ahead. To conclude this paper, we focus on just two
areas: dependability and scalability. We argue that these two, related areas, will jointly
cover the vast amount of research and development for the coming years in distributed
systems.

5.1 Dependability: making our systems robust and trustworthy

As we move into the digital society, we become more dependent on the distributed
systems that surround us. This dependency has increased the awareness and need that
those systems can be justifiably relied upon: not only do they appear to be doing what
they are supposed to do, it can be shown that this view is indeed correct. Worse yet,
is that many distributed systems are hidden from sight (meaning that we do not even
have a notion that they appear to do their job correctly), but our dependency on that
correct behavior is evident until they break. Examples include those related to critical
infrastructures (electricity, public transportation), electronic banking, online stores,
communication, and many more.

123



1006 M. van Steen, A. S. Tanenbaum

We argue that a huge body of knowledge has been built regarding making systems
tolerant to faults and that we basically understand how to prevent, handle, and recover
from failures that occur due to the inherent presence of errors in our systems. The
keyword here is redundancy and we apply it in abundance and in many different
forms.

However, more attention is being paid to increasing the dependability of distrib-
uted systems by providing better protection against deliberate attacks. In other words,
security is moving more into the forefront of systems research. We can expect this
trend to only continue as distributed systems move out into open environments. That
we may be dealing with a very difficult area of research is exemplified by the fact that
the peer-to-peer systems as introduced in the last decade are virtually all operating
in the safe environment of a single, protected organization. As surveyed by Urdaneta
et al. [59], building open and secure peer-to-peer systems is virtually impossible.

Likewise, we see an increasing demand for also protecting users from systems in
the sense that with the ubiquity of distributed systems and the power of their data-
processing capabilities, respecting the privacy and identity of people is leading to
much debate. To us, it is clear that technology alone can not provide the final solu-
tions and expect to see much more blending between distributed-systems technology
and research on societal and ethical issues, along with emphasis on human-systems
interaction.

5.2 Scalability: the Internet of everything

As the quality and ease of conenctivity grows, so will the distributed systems we
develop scale up.Decades agowe could sensibly speak of a stand-alone computer. This
no longer makes any sense, also not for considering distributed systems in isolation.
The fact is simply that all systems we have and develop are connected to the Internet,
and thus to each other. With this increased connectivity, we also see a vast increase
in data processing: the more input channels and links we create, the more data we
need to process. We suspect that much research will be spent on developing scalable
solutions and that without scalability a solution will be quickly dismissed.

An important aspect related to scalability and the ease by which data can now
be attained, is that the scalability of a solution will need to be tested using realistic
workloads. This approach has already seen wide adoption, but the days of simulations
with only synthetic workloads will become less accepted. At the very least, simulation
experiments will need to be backed up experiments with real-world data.

The concentration on scalability also brings in a new element into distributed-
systems research, namely viewing these systems as inherent complex, dynamical
networked systems [20,36]. The interesting aspect of this new element is that there is
an increasing focus on the statistical properties of distributed systems, also in terms
of proving correct or desirable behavior. In other words, instead of concentrating only
on the internal and architectural elements of a distributed system, much more empha-
sis will be put on viewing the system as a whole and finding the proper formalisms
for describing the obeserved behavior. A distributed system thus becomes an object
of study, much like observing and trying to explain natural phenomenon. This trend

123



A brief introduction to distributed systems 1007

follows recent research on understanding the structure and dynamics of, for example,
the Internet and the Web.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adelstein F, Gupta S, Richard G, Schwiebert L (2005) Fundamentals of mobile and pervasive com-
puting. McGraw-Hill, New York

2. Akyildiz IF, Kasimoglu IH (2004) Wireless sensor and actor networks: research challenges. Ad Hoc
Netw 2:351–367

3. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE
Commun Mag 40(8):102–114

4. Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: a survey. Comp Netw 47(4):445–487
5. Alonso G, Casati F, Kuno H, Machiraju V (2004) Web services: concepts. Springer, Berlin
6. Amar L, BarakA, ShilohA (2004) TheMOSIXdirect file system accessmethod for supporting scalable

cluster file systems. Cluster Comput 7(2):141–150
7. AmzaC,CoxA,Dwarkadas S,Keleher P, LuH,RajamonyR,YuW,ZwaenepoelW(1996)Treadmarks:

shared memory computing on networks of workstations. IEEE Comput 29(2):18–28
8. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A,

Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58
9. BaldaufM,Dustdar S,Rosenberg F (2007)A survey on context-aware systems. Int JAdHocUbiquitous

Comput 2:263–277
10. Baset S, Schulzrinne H (2006) An analysis of the skype peer-to-peer internet telephony protocol. In:

25th INFOCOM Conference, IEEE, IEEE Computer Society Press, Los Alamitos, CA, pp 1–11
11. Ben-Ari M (2006) Principles of concurrent and distributed programming, 2nd edn. Prentice Hall,

Englewood Cliffs
12. Bernstein P (1996) Middleware: a model for distributed system services. Commun ACM 39(2):87–98
13. Bernstein P, Newcomer E (2009) Principles of transaction processing, 2nd edn. Morgan Kaufman, San

Mateo
14. Blair G, Stefani J-B (1998) Open distributed processing and multimedia. Addison-Wesley, Reading
15. Bonnet P, Gehrke J, Seshadri P (2002) Towards sensor database systems. In: Second international

conference mobile data management. Springer, Berlin. Lecture notes in computer science, vol 1987,
pp 3–14

16. Brewer E (2012) CAP twelve years later: how the “Rules” have changed. IEEE Comput 45(2):23–29
17. Dey A (2010) Context-aware computing. In: Krumm J (ed) Ubiquitous computing fundamentals. CRC

Press, Boca Raton, pp 321–352
18. DeyA,AbowdG(2000)Towards a better understandingof context and contex-awareness. In:Workshop

on the what, who, where, when, why and how of context-awareness, ACM, ACM Press, New York,
NY

19. Droms R (1997) Dynamic Host Configuration Protocol. RFC 2161
20. Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected

world. Cambridge University Press, Cambridge
21. Engelmann C, Ong H, Scott S (2007) Middleware in modern high performance computing system

architectures. In: International conferences on computational Science, Springer, Berlin. Lecture notes
in computer science, vol 4488, pp 784–791

22. Foster I,KesselmanC,TueckeS (2001)The anatomyof the grid, enabling scalable virtual organizations.
J Supercomput Appl 15(3):200–222

23. Foster I et al (2006) The open grid services architecture, Version 1.5. GGF Informational Document
GFD-I.080

123

http://creativecommons.org/licenses/by/4.0/


1008 M. van Steen, A. S. Tanenbaum

24. Gilbert S, Lynch N (2002) Brewer’s Conjecture and the Feasibility of Consistent, Available. Partition-
tolerant web services. ACM SIGACT News 33(2):51–59

25. Gray J, Reuter A (1993) Transaction processing: concepts and techniques. Morgan Kaufman, San
Mateo

26. Guttman E (2001) Autoconfiguration for IP networking: enabling local communication. IEEE internet
Comput 5:81–86

27. Herlihy M, Shavit N (2008) The art of multiprocessor programming. Morgan Kaufman, San Mateo
28. HohpeG,WoolfB (2004)Enterprise integration patterns: designing, building, anddeployingmessaging

solutions. Addison-Wesley, Reading
29. Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and

human mobility in conference environments. In: SIGCOMM workshop on delay-tolerant network,
ACM Press, New York, NY, pp 244–251

30. Hui P, Yoneki E, Chan SY, Crowcroft J (2007) Distributed community detection in delay tolerant
networks. In: Second international workshop on mobility in the evolving internet architecture, ACM
Press, New York, NY, pp 7:1–7:8

31. ISO (1995) Open distributed processing reference model. International Standard ISO/IEC IS 10746
32. Jackson M (2008) Social and economic networks. Princeton University Press, Princeton
33. Joseph J, Ernest M, Fellenstein C (2004) Evolution of grid computing architecture and grid adoption

models. IBM Syst J 43(4):624–645
34. Karl H, Willig A (2005) Protocols and architectures for wireless sensor networks. Wiley, New York
35. Kreitz G, Niemelä F (2010) Spotify-large scale, low latency, P2P music-on-demand streaming. In:

Tenth international conference IEEE, IEEE Computer Society Press, Los Alamitos, CA, Peer-to-Peer
Computing, pp 266–275

36. Lewis TG (2009) Network science: theory and practice. Wiley, New York
37. Li A, Yang X, Kandula S, Zhang M (2010) CloudCmp: comparing public cloud providers. In: Tenth

internet measurement conference, ACM Press, New York, NY, pp 1–14
38. Lottiaux R, Gallard P, Vallee G, Morin C (2005) OpenMosix, OpenSSI and Kerrighed: a comparative

study. In: Fifth international symposium IEEE Computer Society Press, Los Alamitos, CA, Cluster
Comput. and Grid, pp 1016–1023

39. Lua E, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-peer overlay
network schemes. IEEE Comm Surv Tutor 7(2):22–73

40. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans Database Syst 30(1):122–173

41. Menasce D, Almeida V (2002) Capacity planning for web services. Prentice Hall, Englewood Cliffs
42. Miklas A, Gollu K, Chan K, Saroiu S, Gummamdi K, de Lara E (2007) Exploiting social interactions in

mobile systems. In: Nineth conference on ubiquitous computing (UbiComp), Springer, Berlin. Lecture
notes in computer science, vol 4717, pp 409–428

43. Mottola L, Picco GP (2011) Programming wireless sensor networks: fundamental concepts and state
of the art. ACM Comput Surv 43(3):19:1–19:51

44. Murty J (2008) Programming amazon web services. O’Reilly & Associates, Sebastopol
45. Neuman B (1994) Scale in distributed systems. In: Casavant T, Singhal M (eds) Readings in distributed

computing systems. IEEE Computer Society Press, Los Alamitos, pp 463–489
46. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford
47. Oram A (ed) (2001) Peer-to-peer: harnessing the power of disruptive technologies. O’Reilly & Asso-

ciates, Sebastopol
48. Perkins C (2010) IP mobility support in IPv4. Revised, RFC 5944
49. Perkins C, Johnson D, Arkko J (2011) Mobility support in IPv6. RFC 6275
50. Poslad S (2009) Ubiquitous computing: smart devices. Environments and interactions. Wiley, New

York
51. Roussos G, Marsh AJ, Maglavera S (2005) Enabling pervasive computing with smart phones. IEEE

Pervasive Comput 4(2):20–26
52. Schmidt A (2000) Implicit human computer interaction through context. Personal Ubiquitous Comput

4(2–3):191–199
53. Song C, Qu Z, Blumm N, Barabasi A-L (2010) Limits of predictability in human mobility. Science

327(2):1018–1021
54. Spyropoulos T, Rais RNB, Turletti T, Obraczka K, Vasilakos A (2010) Routing for disruption tolerant

networks: taxonomy and design. Wirel Netw 16(8):2349–2370

123



A brief introduction to distributed systems 1009

55. Tarkoma S (2010) Overlay networks: toward information networking. CRC Press, Boca Raton
56. Tarkoma S, Kangasharju J (2009) Mobile middleware: supporting applications and services. Wiley,

New York
57. Trivedi K (2002) Probability and statistics with reliability, queuing and computer science applications,

2nd edn. Wiley, New York
58. UPnP forum (2008) UPnP device architecture Version 1.1
59. Urdaneta G, Pierre G, van Steen M (2011) A survey of DHT security techniques. ACM Comput Surv

43(2)
60. van Renesse R, Birman K, Cooper R, Glade B, Stephenson P (1994) The horus system. In: Birman K,

van Renesse R (eds) Reliable and distributed computing with the Isis Toolkit. IEEE Computer Society
Press, Los Alamitos, pp 133–147

61. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards a cloud
definition. ACM Comp Commun Rev 39(1):50–55

62. Vega-Redondo F (2007) Complex social networks. Cambridge University Press, Cambridge
63. Voulgaris S, Dobson M, van Steen M (2016) Decentralized network-level synchronization in mobile

Ad Hoc networks. ACM Trans Sensor Netw 12(1). doi:10.1145/2880223
64. Waldo J,WyantG,WollrathA,Kendall S (1997)A note on distributed computing. In: Secondworkshop

on mobile object systems, Springer, Berlin. Lecture notes in computer science, vol 1222, pp 1–10
65. Wams J (2011) Unified messaging and micro-objects. PhD thesis, VU University Amsterdam
66. WelshM,MainlandG (2004)Programming sensor networks using abstract regions. In: First symposium

networked systems design and implementation. USENIX, USENIX, Berkeley, CA
67. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state of the art and research challenges. J

Internet Serv Appl 1(1):7–18
68. Zhao F, Guibas L (2004) Wireless sensor networks. Morgan Kaufman, San Mateo

123

http://dx.doi.org/10.1145/2880223

	A brief introduction to distributed systems
	Abstract
	1 Introduction
	2 What is a distributed system?
	2.1 Characteristic 1: collection of autonomous computing elements
	2.2 Characteristic 2: single coherent system
	2.3 Middleware and distributed systems

	3 Design goals
	3.1 Supporting resource sharing
	3.2 Making distribution transparent
	Types of distribution transparency
	Degree of distribution transparency

	3.3 Being open
	Interoperability, composability, and extensibility
	Separating policy from mechanism

	3.4 Being scalable
	Scalability dimensions
	Scaling techniques

	3.5 Pitfalls

	4 Types of distributed systems
	4.1 High performance distributed computing
	Cluster computing
	Grid computing
	Cloud computing

	4.2 Distributed information systems
	Distributed transaction processing
	Enterprise application integration

	4.3 Pervasive systems
	Ubiquitous computing systems
	Mobile computing systems
	Sensor networks


	5 Outlook
	5.1 Dependability: making our systems robust and trustworthy
	5.2 Scalability: the Internet of everything

	References




