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AIM: Coordination and/or Agreement

• Collection of algorithms whose goals vary 


but which share an aim that is fundamental in distributed systems


for a set of distributed processes to coordinate their actions or to agree 
on one or more values

2

DTU Compute
Department of Applied Mathematics and Computer Science



Election Algorithm

• An algorithm for choosing a unique process to play a particular role


• Example: 


‣ In a variant of the “central-server” algorithm for ME, the server is chosen 
from among the processes pi, i = 1, 2, ..., N that need to use the CS


‣ An election algorithm is needed to choose which of the processes will play 
the role of server


‣ It is essential that all the processes agree on the choice


‣ Afterwards, if the process that plays the role of server wishes to retire, then 
another election is required to choose a replacement
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Roles and Election Calls

• At any point in time, a process pi is either 


‣ a participant (meaning that it is engaged in some run of the algorithm)


‣ or a non-participant (meaning that it is not currently engaged in any 
election)


• A process calls the election if it takes an action that initiates a particular run of 
the election algorithm


• An individual process does not call more than one election at a time


• In principle, N processes could call N concurrent elections
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Uniqueness of the Elected Process

• The choice of elected process must be unique, even if several processes call 
elections concurrently


• Without loss of generality, we require that the elected process be chosen as 
the one with the largest identifier


• The identifier may be any useful value, as long as the identifiers are unique 
and totally ordered


Example: 

we could elect the process with the lowest computational load, by having 
each process use <1/load, i> as its identifier

where load > 0 and 

the process index i is used to order identifiers with the same load
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Election Algorithm Requirements

• Each process pi has a variable electedi, which will contain the identifier of the 
elected process


• Initially set to “⊥” (null, not defined)


• Requirements are that, during any particular run of the algorithm:


‣ E1 (safety): A participant process pi has electedi = ⊥ or electedi = P 

where P is chosen as the non-crashed process at the end of the run with 
the largest identifier


‣ E2 (liveness): All processes pi participate and eventually set electedi ≠ ⊥ - 
or crash
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• N.B.: there may be processes pj that are not yet participants, which record in 
electedj the identifier of the previous elected process



Performance Parameters

• We measure the performance of an election algorithm by


‣ its total network bandwidth utilization (proportional to the total number of 
messages sent)


‣ the turnaround time: the number of serialized message transmission times 
between the initiation and termination of a single round
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Ring-Based Election Algorithm

• Algorithm of Chang and Roberts [1979]


• Suitable for a collection of processes arranged in a logical ring: 


‣ each process pi has a communication channel to the next process in the 
ring p(i+1)modN


‣ messages are sent clockwise around the ring


• No failures occur and the system is asynchronous


• Goal: elect a single process, called the coordinator, which is the process 
with the largest identifier
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[Ring-Based Election Alg.] Starting an Election

• Initially, every process is marked as a non-participant in an election
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• Any process can begin an election by: 


‣ marking itself as a participant, 


‣ placing its identifier in an election 
message


‣ sending it to its clockwise neighbour

(election, 17)



[Ring-Based Election Alg.] Election

• When a process receives an election message, it compares the identifier in 
the message with its own:
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the arrived identifier is greaterIF
it forwards the message to its neighbour;
it marks itself as a participant

THEN

ELSIF the arrived identifier is smaller AND the receiver is a participant
it discards the message (i.e., it does not forward the message)THEN

ELSIF the arrived identifier is smaller AND
the receiver is not a participant

THEN it substitutes its own identifier in the message;
it forwards the message to its neighbour;
it marks itself as a participant

ELSE (the received identifier is that of the receiver itself)
this process’s identifier must be the greatest: coordinator

24
1

28
28

participant

non-participant
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[Ring-Based Election Alg.] Notification

• The coordinator marks itself as a non-participant once more


• Then it sends an elected message to its neighbour, announcing its election 
and enclosing its identity


• When a process pi receives an elected message:


‣ it marks itself as a non-participant


‣ it sets its variable electedi to the identifier in the message


‣ unless it is the new coordinator, forwards the message to its neighbour


• When the elected message reaches the newly elected process the election is 
over
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Conditions: E1 (Safety)

• E1 (safety): A participant process pi has electedi = ⊥ or electedi = P 

where P is chosen as the non-crashed process at the end of the run with the 
largest identifier.


• E1 is met (proof by contradiction). Idea:


‣ All identifiers are compared, since a process must receive its own identifier 
back before sending an elected message


‣ For any two processes, the one with the larger identifier wins on the 
other’s identifier


‣ It is therefore impossible that both should receive their own identifier back

12

DTU Compute
Department of Applied Mathematics and Computer Science



Conditions: E2 (Liveness)

• E2 (liveness): All processes pi participate and eventually set electedi ≠ ⊥ - or 
crash


• E2 is met. Idea:


‣ It follows immediately from the guaranteed traversals of the ring (there are 
no failures)


‣ Note how the non-participant and participant states are used so that 
messages arising when another starts an election at the same time are 
extinguished as soon as possible, and always before the “winning” 
election result has been announced
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[Ring-Based Algorithm] Performance Analysis

• Total networks bandwidth utilization (proportional to the total number of 
messages sent):


‣ If only a single process starts an election, then the worst-performing case 
is when its anti-clockwise neighbour has the highest identifier


‣ A total of N-1 messages is then required to reach this neighbour 


‣ This neighbour will not announce its election until its identifier has 
completed another circuit, taking a further N messages


‣ The elected message is then sent N times, making 3N-1 messages in all


• The turnaround time is also 3N-1, since these messages are sent sequentially
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Limitations of the Ring-Based Algorithm

• Useful for understanding the properties of election algorithms in general 


BUT


the fact it tolerates no failures makes it of limited practical value


• However, with a reliable failure detector it is in principle possible to 
reconstitute the ring when a process crashes


• The bully algorithm [Garcia-Molina, 1982] addresses the problem of process 
crashes by means of reliable failure detectors

15

DTU Compute
Department of Applied Mathematics and Computer Science



Failure Detectors

• Failure detector: service that processes queries about whether a particular 
process has failed


• Often implemented by an object local to each process (on the same 
computer), called local failure detector, that runs a distributed failure 
detection algorithm (in conjunction with its counterparts at other processes)


• A failure detector is not necessarily accurate (asynchronous systems)


• Two classes of failure detectors: unreliable and reliable


• Most fall into the category of unreliable failure detectors
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Unreliable Failure Detector

• May produce one of two values when given the identity of a process: 
Unsuspected or Suspected


• Both of these results are hints, which may or may not accurately reflect 
whether the process has actually failed
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• Suspected: the failure detection has some indication that the process may 
have failed (example: message not received or received late)


‣ The suspicion may be misplaced! (Example: the process could be 
functioning correctly, but on the other side of a network partition; or it could 
be running more slowly than expected)

• Unsuspected: the detector has recently received evidence suggesting that 
the process has not failed (example: a msg was recently received from it)


‣ But of course the process can have failed since then!



[Unreliable Failure Detector] Possible Algorithm

• D secs: estimate of the maximum msgs transmission


• Every T secs, each process p sends a “p is here” msg to every other process


IF the local failure detector at process q does not receive a “p is here” msg 
within T + D secs of the last one


THEN it reports to q that p is Suspected


• However, IF it subsequently receives a “p is here” message, THEN it reports 
to q that p is Unsuspected
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What About T and D?

• In a real distr. system, there are practical limits on msg transmission times


• If we choose small values for T and D (total 0.1 sec, say): failure detector may 
suspect non-crashed process (inaccurate failure detector)


• If we choose a large total timeout value (a week, say): crashed processes will 
be often reported as Unsuspected (incomplete failure detector)
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• Solution: adaptive timeouts, reflecting the observed network delay conditions


‣ Example: if a local failure detector receives a “p is here” in 20 secs instead 
of the expected maximum of 10 secs, then it could reset its timeout value 
for p accordingly


• The failure detector remains unreliable (only hints!), but the probability of its 
accuracy increases



Reliable Failure Detector

• Always accurate in detecting a process’s failure


• It always processes’ queries with either a response of Unsuspected (a hint as 
before) or Failed


• Failed: means that the detector has determined that the process has crashed


• Reliable failure detectors require that the system is synchronous!
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The Bully Algorithm [Garcia-Molina, 1982]

• It allows processes to crash during an election


• It assumes that message delivery between processes is reliable


• Unlike the ring-based algorithm, it assumes that the system is synchronous


• It assumes that each process knows which processes have higher identifiers 
and that it can communicate with all such processes
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N.B.: the ring-based algorithm assumed that processes have a minimal a priori 
knowledge of one another: each knows only how to communicate with its 
neighbour, and none knows the identifiers of the other processes



[Bully Algorithm] Types of Messages

• Three type of messages in the algorithm:


‣ election: sent to announce an election


‣ answer: sent in response to an election message


‣ coordinator: sent to announce the identity of the elected process (new 
coordinator)


• A process begins an election when it notices, through timeouts, that the 
coordinator has failed


• Several processes may discover this concurrently!
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[Bully Algorithm] Reliable Failure Detector

• Since the system is synchronous, we can construct a reliable failure detector


• Ttrans = maximum transmission delay


• Tprocess = maximum delay for processing a message


• T = 2Ttrans + Tprocess: upper bound on the total elapsed time from sending 
a message to another process to receiving a response


• If no response arrives within time T, then the local failure detector can report 
that the intended recipient of the request has failed
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Bully Algorithm - Part 1

• The process that knows it has the highest identifier can elect itself as the 
coordinator simply by sending a coordinator message to all processes


• A process with a lower identifier begins an election by sending en election 
message to those processes that have a higher identifier


• Then it awaits an answer message in response


IF none arrives within time T


THEN the process considers itself the coordinator and sends a coordinator  

           message to all the processes with lower identifiers announcing this


ELSE the process waits a further period T for a coordinator message to

          arrive from the new coordinator

          If none arrives, it begins another election

24

DTU Compute
Department of Applied Mathematics and Computer Science



Bully Algorithm - Part 2

• If the process receives an election message:


‣ it sends back an answer message


‣ begins another election (unless it has begun one already)


• If a process pi receives a coordinator message:


‣ it sets its variable electedi to the identifier of the coordinator contained 
within it 


‣ treats that process as the coordinator
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[Bully Algorithm] Example

• Four processes p1, p2, p3 and p4 (coordinator)


• Process p1 detects the failure of the coordinator p4, and starts an election


• On receiving an election message from p1, processes, p2 and p3 send answer 
messages to p1
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[Bully Algorithm] Example

• Consequently, p2 and p3 begin their own elections


• p3 sends an answer message to p2


• But p3 receives no answer message from the failed process p4
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[Bully Algorithm] Example
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• Eventually, p2 is elected coordinator.

• p3 therefore decides that it is the coordinator


• But before it can send out the coordinator message, it too fails 


• When p1’s timeout period T expires (which we assume occurs before p2’s 
timeout expires), it deduces the absence of a coordinator message and 
begins another election
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Why “Bully”?

• When a process is started to replace a crashed 
process, it begins an election


• If it has the highest process identifier, then it will 
decide that it is the coordinator and announce 
this to the other processes


• Thus it will become the coordinator, even though 
the current coordinator is functioning!
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If a process receives a coordinator message from a process with a lower 
identifier, it immediately initiates a new election. This is how the algorithm gets 
its name: a process with a higher identifier will bully a lower identifier 
process out of the coordinator position as soon as it comes online.

http://youoffendmeyouoffendmyfamily.com/wordpress/wp-content/uploads/2009/09/bully.gif


[Bully Algorithm] Performance Analysis

• In the best case, the process with the second highest identifier notices the 
coordinator’s failure


‣ Then it can immediately elect itself and send N-2 coordinator messages


‣ Turnaround time is 1 message transmission time: coordinator


• In the worst case, the algorithm requires O(N2) messages


‣ The process with the least identifier first detects the coordinator’s failure


‣ for then N-1 processes altogether begin elections, each sending messages 
to processes with higher identifiers


‣ Turnaround time is approx. 5 message transmission times if there are no 
failures during the run: election, answer, election, answer, coordinator
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