
Coordination and Agreement

DTU Compute
Department of Applied Mathematics and Computer Science

1 Introduction

2 Distributed Mutual Exclusion

3 Multicast Communication

4 Elections

5 Consensus and Related Problems

AIM: Coordination and/or Agreement

• Collection of algorithms whose goals vary

but which share an aim that is fundamental in distributed systems

for a set of distributed processes to coordinate their actions or to agree
on one or more values

2

DTU Compute
Department of Applied Mathematics and Computer Science

Election Algorithm

• An algorithm for choosing a unique process to play a particular role

• Example:

‣ In a variant of the “central-server” algorithm for ME, the server is chosen
from among the processes pi, i = 1, 2, ..., N that need to use the CS

‣ An election algorithm is needed to choose which of the processes will play
the role of server

‣ It is essential that all the processes agree on the choice

‣ Afterwards, if the process that plays the role of server wishes to retire, then
another election is required to choose a replacement

3

DTU Compute
Department of Applied Mathematics and Computer Science

Roles and Election Calls

• At any point in time, a process pi is either

‣ a participant (meaning that it is engaged in some run of the algorithm)

‣ or a non-participant (meaning that it is not currently engaged in any
election)

• A process calls the election if it takes an action that initiates a particular run of
the election algorithm

• An individual process does not call more than one election at a time

• In principle, N processes could call N concurrent elections

4

DTU Compute
Department of Applied Mathematics and Computer Science

Uniqueness of the Elected Process

• The choice of elected process must be unique, even if several processes call
elections concurrently

• Without loss of generality, we require that the elected process be chosen as
the one with the largest identifier

• The identifier may be any useful value, as long as the identifiers are unique
and totally ordered

Example:

we could elect the process with the lowest computational load, by having
each process use <1/load, i> as its identifier

where load > 0 and

the process index i is used to order identifiers with the same load

5

DTU Compute
Department of Applied Mathematics and Computer Science

Election Algorithm Requirements

• Each process pi has a variable electedi, which will contain the identifier of the
elected process

• Initially set to “⊥” (null, not defined)

• Requirements are that, during any particular run of the algorithm:

‣ E1 (safety): A participant process pi has electedi = ⊥ or electedi = P

where P is chosen as the non-crashed process at the end of the run with
the largest identifier

‣ E2 (liveness): All processes pi participate and eventually set electedi ≠ ⊥ -
or crash

6

DTU Compute
Department of Applied Mathematics and Computer Science

• N.B.: there may be processes pj that are not yet participants, which record in
electedj the identifier of the previous elected process

Performance Parameters

• We measure the performance of an election algorithm by

‣ its total network bandwidth utilization (proportional to the total number of
messages sent)

‣ the turnaround time: the number of serialized message transmission times
between the initiation and termination of a single round

7

DTU Compute
Department of Applied Mathematics and Computer Science

Ring-Based Election Algorithm

• Algorithm of Chang and Roberts [1979]

• Suitable for a collection of processes arranged in a logical ring:

‣ each process pi has a communication channel to the next process in the
ring p(i+1)modN

‣ messages are sent clockwise around the ring

• No failures occur and the system is asynchronous

• Goal: elect a single process, called the coordinator, which is the process
with the largest identifier

8

DTU Compute
Department of Applied Mathematics and Computer Science

[Ring-Based Election Alg.] Starting an Election

• Initially, every process is marked as a non-participant in an election

9

DTU Compute
Department of Applied Mathematics and Computer Science

• Any process can begin an election by:

‣ marking itself as a participant,

‣ placing its identifier in an election
message

‣ sending it to its clockwise neighbour

(election, 17)

[Ring-Based Election Alg.] Election

• When a process receives an election message, it compares the identifier in
the message with its own:

10

DTU Compute
Department of Applied Mathematics and Computer Science

the arrived identifier is greaterIF
it forwards the message to its neighbour;
it marks itself as a participant

THEN

ELSIF the arrived identifier is smaller AND the receiver is a participant
it discards the message (i.e., it does not forward the message)THEN

ELSIF the arrived identifier is smaller AND
the receiver is not a participant

THEN it substitutes its own identifier in the message;
it forwards the message to its neighbour;
it marks itself as a participant

ELSE (the received identifier is that of the receiver itself)
this process’s identifier must be the greatest: coordinator

24
1

28
28

participant

non-participant

17

[Ring-Based Election Alg.] Notification

• The coordinator marks itself as a non-participant once more

• Then it sends an elected message to its neighbour, announcing its election
and enclosing its identity

• When a process pi receives an elected message:

‣ it marks itself as a non-participant

‣ it sets its variable electedi to the identifier in the message

‣ unless it is the new coordinator, forwards the message to its neighbour

• When the elected message reaches the newly elected process the election is
over

11

DTU Compute
Department of Applied Mathematics and Computer Science

Conditions: E1 (Safety)

• E1 (safety): A participant process pi has electedi = ⊥ or electedi = P

where P is chosen as the non-crashed process at the end of the run with the
largest identifier.

• E1 is met (proof by contradiction). Idea:

‣ All identifiers are compared, since a process must receive its own identifier
back before sending an elected message

‣ For any two processes, the one with the larger identifier wins on the
other’s identifier

‣ It is therefore impossible that both should receive their own identifier back

12

DTU Compute
Department of Applied Mathematics and Computer Science

Conditions: E2 (Liveness)

• E2 (liveness): All processes pi participate and eventually set electedi ≠ ⊥ - or
crash

• E2 is met. Idea:

‣ It follows immediately from the guaranteed traversals of the ring (there are
no failures)

‣ Note how the non-participant and participant states are used so that
messages arising when another starts an election at the same time are
extinguished as soon as possible, and always before the “winning”
election result has been announced

13

DTU Compute
Department of Applied Mathematics and Computer Science

[Ring-Based Algorithm] Performance Analysis

• Total networks bandwidth utilization (proportional to the total number of
messages sent):

‣ If only a single process starts an election, then the worst-performing case
is when its anti-clockwise neighbour has the highest identifier

‣ A total of N-1 messages is then required to reach this neighbour

‣ This neighbour will not announce its election until its identifier has
completed another circuit, taking a further N messages

‣ The elected message is then sent N times, making 3N-1 messages in all

• The turnaround time is also 3N-1, since these messages are sent sequentially

14

DTU Compute
Department of Applied Mathematics and Computer Science

Limitations of the Ring-Based Algorithm

• Useful for understanding the properties of election algorithms in general

BUT

the fact it tolerates no failures makes it of limited practical value

• However, with a reliable failure detector it is in principle possible to
reconstitute the ring when a process crashes

• The bully algorithm [Garcia-Molina, 1982] addresses the problem of process
crashes by means of reliable failure detectors

15

DTU Compute
Department of Applied Mathematics and Computer Science

Failure Detectors

• Failure detector: service that processes queries about whether a particular
process has failed

• Often implemented by an object local to each process (on the same
computer), called local failure detector, that runs a distributed failure
detection algorithm (in conjunction with its counterparts at other processes)

• A failure detector is not necessarily accurate (asynchronous systems)

• Two classes of failure detectors: unreliable and reliable

• Most fall into the category of unreliable failure detectors

16

DTU Compute
Department of Applied Mathematics and Computer Science

Unreliable Failure Detector

• May produce one of two values when given the identity of a process:
Unsuspected or Suspected

• Both of these results are hints, which may or may not accurately reflect
whether the process has actually failed

17

DTU Compute
Department of Applied Mathematics and Computer Science

• Suspected: the failure detection has some indication that the process may
have failed (example: message not received or received late)

‣ The suspicion may be misplaced! (Example: the process could be
functioning correctly, but on the other side of a network partition; or it could
be running more slowly than expected)

• Unsuspected: the detector has recently received evidence suggesting that
the process has not failed (example: a msg was recently received from it)

‣ But of course the process can have failed since then!

[Unreliable Failure Detector] Possible Algorithm

• D secs: estimate of the maximum msgs transmission

• Every T secs, each process p sends a “p is here” msg to every other process

IF the local failure detector at process q does not receive a “p is here” msg
within T + D secs of the last one

THEN it reports to q that p is Suspected

• However, IF it subsequently receives a “p is here” message, THEN it reports
to q that p is Unsuspected

18

DTU Compute
Department of Applied Mathematics and Computer Science

What About T and D?

• In a real distr. system, there are practical limits on msg transmission times

• If we choose small values for T and D (total 0.1 sec, say): failure detector may
suspect non-crashed process (inaccurate failure detector)

• If we choose a large total timeout value (a week, say): crashed processes will
be often reported as Unsuspected (incomplete failure detector)

19

DTU Compute
Department of Applied Mathematics and Computer Science

• Solution: adaptive timeouts, reflecting the observed network delay conditions

‣ Example: if a local failure detector receives a “p is here” in 20 secs instead
of the expected maximum of 10 secs, then it could reset its timeout value
for p accordingly

• The failure detector remains unreliable (only hints!), but the probability of its
accuracy increases

Reliable Failure Detector

• Always accurate in detecting a process’s failure

• It always processes’ queries with either a response of Unsuspected (a hint as
before) or Failed

• Failed: means that the detector has determined that the process has crashed

• Reliable failure detectors require that the system is synchronous!

20

DTU Compute
Department of Applied Mathematics and Computer Science

The Bully Algorithm [Garcia-Molina, 1982]

• It allows processes to crash during an election

• It assumes that message delivery between processes is reliable

• Unlike the ring-based algorithm, it assumes that the system is synchronous

• It assumes that each process knows which processes have higher identifiers
and that it can communicate with all such processes

21

DTU Compute
Department of Applied Mathematics and Computer Science

N.B.: the ring-based algorithm assumed that processes have a minimal a priori
knowledge of one another: each knows only how to communicate with its
neighbour, and none knows the identifiers of the other processes

[Bully Algorithm] Types of Messages

• Three type of messages in the algorithm:

‣ election: sent to announce an election

‣ answer: sent in response to an election message

‣ coordinator: sent to announce the identity of the elected process (new
coordinator)

• A process begins an election when it notices, through timeouts, that the
coordinator has failed

• Several processes may discover this concurrently!

22

DTU Compute
Department of Applied Mathematics and Computer Science

[Bully Algorithm] Reliable Failure Detector

• Since the system is synchronous, we can construct a reliable failure detector

• Ttrans = maximum transmission delay

• Tprocess = maximum delay for processing a message

• T = 2Ttrans + Tprocess: upper bound on the total elapsed time from sending
a message to another process to receiving a response

• If no response arrives within time T, then the local failure detector can report
that the intended recipient of the request has failed

23

DTU Compute
Department of Applied Mathematics and Computer Science

Bully Algorithm - Part 1

• The process that knows it has the highest identifier can elect itself as the
coordinator simply by sending a coordinator message to all processes

• A process with a lower identifier begins an election by sending en election
message to those processes that have a higher identifier

• Then it awaits an answer message in response

IF none arrives within time T

THEN the process considers itself the coordinator and sends a coordinator

 message to all the processes with lower identifiers announcing this

ELSE the process waits a further period T for a coordinator message to

 arrive from the new coordinator

 If none arrives, it begins another election

24

DTU Compute
Department of Applied Mathematics and Computer Science

Bully Algorithm - Part 2

• If the process receives an election message:

‣ it sends back an answer message

‣ begins another election (unless it has begun one already)

• If a process pi receives a coordinator message:

‣ it sets its variable electedi to the identifier of the coordinator contained
within it

‣ treats that process as the coordinator

25

DTU Compute
Department of Applied Mathematics and Computer Science

[Bully Algorithm] Example

• Four processes p1, p2, p3 and p4 (coordinator)

• Process p1 detects the failure of the coordinator p4, and starts an election

• On receiving an election message from p1, processes, p2 and p3 send answer
messages to p1

26

DTU Compute
Department of Applied Mathematics and Computer Science

[Bully Algorithm] Example

• Consequently, p2 and p3 begin their own elections

• p3 sends an answer message to p2

• But p3 receives no answer message from the failed process p4

27

DTU Compute
Department of Applied Mathematics and Computer Science

[Bully Algorithm] Example

28

• Eventually, p2 is elected coordinator.

• p3 therefore decides that it is the coordinator

• But before it can send out the coordinator message, it too fails

• When p1’s timeout period T expires (which we assume occurs before p2’s
timeout expires), it deduces the absence of a coordinator message and
begins another election

DTU Compute
Department of Applied Mathematics and Computer Science

Why “Bully”?

• When a process is started to replace a crashed
process, it begins an election

• If it has the highest process identifier, then it will
decide that it is the coordinator and announce
this to the other processes

• Thus it will become the coordinator, even though
the current coordinator is functioning!

29

DTU Compute
Department of Applied Mathematics and Computer Science

If a process receives a coordinator message from a process with a lower
identifier, it immediately initiates a new election. This is how the algorithm gets
its name: a process with a higher identifier will bully a lower identifier
process out of the coordinator position as soon as it comes online.

http://youoffendmeyouoffendmyfamily.com/wordpress/wp-content/uploads/2009/09/bully.gif

[Bully Algorithm] Performance Analysis

• In the best case, the process with the second highest identifier notices the
coordinator’s failure

‣ Then it can immediately elect itself and send N-2 coordinator messages

‣ Turnaround time is 1 message transmission time: coordinator

• In the worst case, the algorithm requires O(N2) messages

‣ The process with the least identifier first detects the coordinator’s failure

‣ for then N-1 processes altogether begin elections, each sending messages
to processes with higher identifiers

‣ Turnaround time is approx. 5 message transmission times if there are no
failures during the run: election, answer, election, answer, coordinator

30

DTU Compute
Department of Applied Mathematics and Computer Science

