
Coordination and Agreement

12.1 Introduction

12.2 Distributed Mutual Exclusion

12.4 Multicast Communication

12.3 Elections

12.5 Consensus and Related Problems

DTU Compute
Department of Applied Mathematics and Computer Science

System Model

• Collection of processes pi (i = 1, 2, ..., N)

• Processes communicate by message passing

• Communication is reliable

• Processes can fail: byzantine (arbitrary) process failures, crash failures

2

DTU Compute
Department of Applied Mathematics and Computer Science

Worst possible failure: any
type of error may occur!

Consensus Problem

• Informally: the processes propose values and have to agree on one among
these values

• More formally:

‣ every process pi begins in the undecided state and proposes a single
value vi ∈ D, i = 1, 2, ..., M

‣ each process then sets the value of a decision variable di

‣ in doing so, the process enters the decided state, in which it may no
longer change di

3

DTU Compute
Department of Applied Mathematics and Computer Science

p1 p2

p3 (crashes)

[Consensus] Example

• Consensus for 3 processes

• p1 and p2 propose “proceed”

• p3 proposes “abort”

but then crashes

• The two processes that remain correct

(p1 and p2) each decide “proceed”

4

DTU Compute
Department of Applied Mathematics and Computer Science

Requirements of a Consensus Algorithm

• The following conditions should hold for every execution of the algorithm:

‣ Termination: eventually each correct process sets its decision variable

‣ Agreement: the decision value of all correct processes is the same

IF pi and pj are correct and have entered the decided state

THEN di = dj (i, j = 1, 2, ..., N)

‣ Integrity: if the correct processes all proposed the same value, then any
correct process in the decided state has chosen that value

5

DTU Compute
Department of Applied Mathematics and Computer Science

Solving Consensus in Absence of Failures

• Consider a system in which processes cannot fail

• Straightforward to solve consensus:

‣ collect the processes into a group

‣ each process reliably multicast its proposed value to the group

‣ each process waits until it has collected all N values (including its own)

‣ it then evaluates the function majority(v1, v2, ..., vN), which returns:

- the value that occurs most often among its arguments or

- the special value ⊥∉ D if no majority exists

6

DTU Compute
Department of Applied Mathematics and Computer Science

On Conditions

• Termination is guaranteed by the reliability of the multicast operation

• Agreement and integrity are guaranteed by:

‣ the definition of majority

‣ the integrity property of a reliable multicast (a correct process delivers a
message m at most once)

Indeed:

‣ every process receives the same set of proposed values

‣ every process evaluates the same function on those values

‣ therefore they must all agree, and if every process proposed the same
value, then they all decide on this value

7

DTU Compute
Department of Applied Mathematics and Computer Science

Solving Consensus in Presence of Crash Failures

• The algorithm assumes a synchronous system where up to f of the N
processes exhibit crash failures

• Idea:

‣ each process collects proposed values from the other processes

‣ the algorithm proceeds in f + 1 rounds, in each of which the correct
processes B-multicast the values between themselves

‣ by assumption, at most f processes may crash ==> at worst, all f crashes
occurred during the rounds

‣ the algorithm guarantees that at the end of the f + 1 rounds all the correct
processes that have survived are in a position to agree

8

DTU Compute
Department of Applied Mathematics and Computer Science

Consensus in a Synchronous System

9

DTU Compute
Department of Applied Mathematics and Computer Science

Valuesri holds the set of proposed values
known to process pi at the beginning of round r

Assumption: duration of a round limited by
setting a timeout based on the maximum time
for a correct process to multicast a message

On Conditions

• Termination is obvious from the fact that the system is synchronous

• To check the correctness of the algorithm we must show that each process
arrives at the same set of values at the end of the final round

• Agreement and integrity will then follow, because the processes apply the
minimum function to this set

• So we have to prove that the algorithm is correct...

10

DTU Compute
Department of Applied Mathematics and Computer Science

Proof of Correctness

• By contradiction: assume that two processes differ in their final set of values

‣ Without loss of generality, some correct process pi possesses a value v
that another process pj (i ≠ j) does not possess

‣ Situation possible only if a third process, pk say, that managed to send v to
pi crashed before v could be delivered to pj

‣ In turn, any process sending v in the previous round must have crashed, to
explain why pk possesses v in that round but pj did not receive it

‣ Proceeding in this way, we have to posit at least one crash in each of the
preceding rounds

‣ BUT we have assumed that at most f crashes can occur, and there are f +
1 rounds! ==> contradiction

11

DTU Compute
Department of Applied Mathematics and Computer Science

Lower Bound

Any algorithm to reach consensus despite up to f crash
failures requires at least f + 1 rounds of message exchanges,
no matter how it is constructed.

D. Dolev and H. R. Strong

Authenticated Algorithms for Byzantine Agreement

SIAM Journal of Computing 12(4), 656-66, 1983. DOI:10.1137/0212045.

This lower bound also applies in the case of byzantine
failures.

12

DTU Compute
Department of Applied Mathematics and Computer Science

Variant of Consensus: Byzantine Generals

• Three or more generals must agree to attack or retreat

‣ One general, the commander, issues the order

‣ Other generals, the lieutenants, must decide to attack or retreat

• One or more generals may be treacherous:

‣ If the commander is treacherous, he proposes attacking to one general
and retreating to another

‣ If the lieutenant is treacherous, he tells one of his peers that the
commander told him to attack and another that they are to retreat

13

DTU Compute
Department of Applied Mathematics and Computer Science

• Difference from consensus: a single process supplies a value that the others
are to agree upon (instead of each of them proposing a value)

[Byzantine Generals] Requirements

• Termination: eventually each correct process sets its decision variable

• Agreement: the decision value of all correct processes is the same

• Integrity: if the commander is correct, then all correct processes decide on
the value that the commander proposed

• Further reading:

L. Lamport, R. Shostak, and M. Pease.

The Byzantine Generals Problem.

ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3),
382-401, 1982.

14

DTU Compute
Department of Applied Mathematics and Computer Science

Variant of Consensus: Interactive Consistency

• Every process proposes a single value

• Goal: correct processes agree on a vector of values (decision vector), one for
each process

‣ Example: each of a set of processes want to obtain the same information
about their respective states

• Requirements:

‣ Termination: eventually each correct process sets its decision variable

‣ Agreement: the decision vector of all correct processes is the same

‣ Integrity: if pi is correct, then all correct processes decide on vi as the ith
component of their vector

15

DTU Compute
Department of Applied Mathematics and Computer Science

Relating Consensus to Other Problems

• All the problems concerned with making decisions in the context of arbitrary
or crash failures

• We can sometimes generate solutions for one problem in terms of another

• Very useful property!! Because:

‣ it increases our understanding of the problems

‣ by reusing solutions we can potentially save on implementation effort and
complexity

16

DTU Compute
Department of Applied Mathematics and Computer Science

Suppose There Exists Solution to...

• Ci(v1, v2, ..., vN): returns the decision value of pi in a run of the solution to the
consensus problem, where v1,v2, ..., vN are the values that the processes
proposed

• BGi(j, v): returns the decision value of pi in a run of the solution to the
byzantine generals problem, where pj, the commander, proposes the value
v

• ICi(v1, v2, ..., vN)[j]: returns the jth value in the decision vector of pi in a run of
the solution to the interactive consistency problem, where v1,v2, ..., vN are
the values that the processes proposed

17

DTU Compute
Department of Applied Mathematics and Computer Science

Linking the Problems: IC from BG

• We can construct a solution to the Interactive Consistency (IC) problem from
the Byzantine Generals (BG) problem as follows:

‣ we run BG N times, once with each process pi (i = 1, 2, ..., N) as the
commander

18

DTU Compute
Department of Applied Mathematics and Computer Science

ICi(v1, v2, ..., vN)[j] = BGi(j, vj)
(i, j = 1, 2, ..., N)

Linking the Problems: C from IC

• We can construct a solution to the Consensus (C) problem from the
Interactive Consistency (IC) problem as follows:

‣ we run IC to produce a vector of values at each process

‣ then we apply an appropriate function (such as majority) on the vector’s
values to derive a single value

19

DTU Compute
Department of Applied Mathematics and Computer Science

Ci(v1, v2, ..., vN) = majority(

 ICi(v1, v2, ..., vN)[1],

 ...,

 ICi(v1, v2, ..., vN)[N])

(i = 1, 2, ..., N)

Linking the Problems: BG from C

20

DTU Compute
Department of Applied Mathematics and Computer Science

• Show how it is possible to construct a solution to the Byzantine Generals
(BG) problem from the Consensus (C) problem.

Byzantine Generals Problem in a Sync. System

• Up to f of the N processes can exhibit arbitrary (byzantine) failures:

‣ a faulty process may send any message with any value at any time

‣ it may omit to send any message

• Correct processes can detect the absence of a message through a timeout

BUT they cannot conclude that the sender has crashed, since it may be silent
for some time and then send messages again!

• Communication channels between pairs of processes are private and reliable

21

DTU Compute
Department of Applied Mathematics and Computer Science

Impossibility with Three Processes: Scenario 1

• 3 processes that send messages to one another

• 1 process allowed to fail

22

DTU Compute
Department of Applied Mathematics and Computer Science

p3 says p1 says u

fault

p1 correctly sends
the same value v to each of

the other 2 processes

p2 correctly echoes
this to p3

p3 sends a value

u ≠ v to p2

All p2 knows at this stage is that
it has received differing values.

Impossibility with Three Processes: Scenario 2

23

DTU Compute
Department of Applied Mathematics and Computer Science

fault
p1 sends different
values to lieutenants

p2 correctly echoes
this to p3

p3 correctly
echoes this to p2

Both p1 and p2 have received two different messages

• 3 processes that send messages to one another

• 1 process allowed to fail

General Result: Impossibility with N ≤ 3f

• M. Pease, R. Shostak and L. Lamport.

Reaching agreement in the presence of faults.

Journal of the ACM, 27(2), 228-34, 1980.

24

DTU Compute
Department of Applied Mathematics and Computer Science

• They generalized the basic impossibility result for 3 processes, to prove that

no solution of the BG problem is possible if the
total number of processes (N) is less than three

times the number of failures (f), i.e., N ≤ 3f

Solution with N ≥ 4 and f = 1

• N.B. Have a look at the fully algorithm of Pease et al. that solves the BG
problem in a synchronous system with N ≥ 3f + 1

• In the special case N ≥ 4 and f = 1, the correct generals can reach agreement
in 2 rounds of messages:

‣ 1st round: the commander sends a value to each of the lieutenants

‣ 2nd round: each of the lieutenants sends the value it received to its peers

• Agreement is then reached using the function majority

25

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Scenario 1

26

DTU Compute
Department of Applied Mathematics and Computer Science

The two correct
lieutenant processes

agree, deciding on the
commander’s value

p2 decides on majority(v, u, v) = v

p4 decides on majority(v, v, w) = v

Example: Scenario 2

27

DTU Compute
Department of Applied Mathematics and Computer Science

The commander is
faulty, but

the three correct
processes agree

p2, p3 and p4 decides on
majority(u, v, w) = ⊥

Impossibility in Asynchronous Systems

• All solutions we have seen so far are limited to synchronous systems

• Fischer et al [1985] proved that no algorithm can guarantee to reach
consensus in an asynchronous system, even with one process crash
failure

• Thus we immediately know from this result that there is no guaranteed
solution in an asynchronous system to the BG and IC problems

• This impossibility is circumvented by masking faults or using failure detectors

28

DTU Compute
Department of Applied Mathematics and Computer Science

