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System Model

• Collection of processes pi (i = 1, 2, ..., N)


• Processes communicate by message passing


• Communication is reliable


• Processes can fail: byzantine (arbitrary) process failures, crash failures
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Worst possible failure: any 
type of error may occur!



Consensus Problem

• Informally: the processes propose values and have to agree on one among 
these values


• More formally:


‣ every process pi begins in the undecided state and proposes a single 
value vi ∈ D, i = 1, 2, ..., M


‣ each process then sets the value of a decision variable di


‣ in doing so, the process enters the decided state, in which it may no 
longer change di
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p1 p2

p3 (crashes)

[Consensus] Example

• Consensus for 3 processes


• p1 and p2 propose “proceed”


• p3 proposes “abort” 


but then crashes


• The two processes that remain correct 


(p1 and p2) each decide “proceed”

4

DTU Compute
Department of Applied Mathematics and Computer Science



Requirements of a Consensus Algorithm

• The following conditions should hold for every execution of the algorithm:


‣ Termination: eventually each correct process sets its decision variable


‣ Agreement: the decision value of all correct processes is the same

IF        pi and pj are correct and have entered the decided state 

THEN di = dj (i, j = 1, 2, ..., N)


‣ Integrity: if the correct processes all proposed the same value, then any 
correct process in the decided state has chosen that value
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Solving Consensus in Absence of Failures

• Consider a system in which processes cannot fail


• Straightforward to solve consensus:


‣ collect the processes into a group


‣ each process reliably multicast its proposed value to the group


‣ each process waits until it has collected all N values (including its own)


‣ it then evaluates the function majority(v1, v2, ..., vN), which returns:


- the value that occurs most often among its arguments or 


- the special value ⊥∉ D if no majority exists
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On Conditions

• Termination is guaranteed by the reliability of the multicast operation


• Agreement and integrity are guaranteed by:


‣ the definition of majority


‣ the integrity property of a reliable multicast (a correct process delivers a 
message m at most once)


Indeed:


‣ every process receives the same set of proposed values


‣ every process evaluates the same function on those values


‣ therefore they must all agree, and if every process proposed the same 
value, then they all decide on this value
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Solving Consensus in Presence of Crash Failures

• The algorithm assumes a synchronous system where up to f of the N 
processes exhibit crash failures


• Idea:


‣ each process collects proposed values from the other processes


‣ the algorithm proceeds in f + 1 rounds, in each of which the correct 
processes B-multicast the values between themselves


‣ by assumption, at most f processes may crash ==> at worst, all f crashes 
occurred during the rounds


‣ the algorithm guarantees that at the end of the f + 1 rounds all the correct 
processes that have survived are in a position to agree
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Consensus in a Synchronous System
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Valuesri holds the set of proposed values 
known to process pi at the beginning of round r

Assumption: duration of a round limited by 
setting a timeout based on the maximum time 
for a correct process to multicast a message



On Conditions

• Termination is obvious from the fact that the system is synchronous


• To check the correctness of the algorithm we must show that each process 
arrives at the same set of values at the end of the final round


• Agreement and integrity will then follow, because the processes apply the 
minimum function to this set


• So we have to prove that the algorithm is correct...
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Proof of Correctness

• By contradiction: assume that two processes differ in their final set of values


‣ Without loss of generality, some correct process pi possesses a value v 
that another process pj (i ≠ j) does not possess


‣ Situation possible only if a third process, pk say, that managed to send v to 
pi crashed before v could be delivered to pj


‣ In turn, any process sending v in the previous round must have crashed, to 
explain why pk possesses v in that round but pj did not receive it


‣ Proceeding in this way, we have to posit at least one crash in each of the 
preceding rounds


‣ BUT we have assumed that at most f crashes can occur, and there are f + 
1 rounds! ==> contradiction
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Lower Bound

Any algorithm to reach consensus despite up to f crash 
failures requires at least f + 1 rounds of message exchanges, 
no matter how it is constructed. 


D. Dolev and H. R. Strong 

Authenticated Algorithms for Byzantine Agreement 

SIAM Journal of Computing 12(4), 656-66, 1983. DOI:10.1137/0212045.


This lower bound also applies in the case of byzantine 
failures.
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Variant of Consensus: Byzantine Generals

• Three or more generals must agree to attack or retreat


‣ One general, the commander, issues the order


‣ Other generals, the lieutenants, must decide to attack or retreat


• One or more generals may be treacherous:


‣ If the commander is treacherous, he proposes attacking to one general 
and retreating to another


‣ If the lieutenant is treacherous, he tells one of his peers that the 
commander told him to attack and another that they are to retreat
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• Difference from consensus: a single process supplies a value that the others 
are to agree upon (instead of each of them proposing a value)



[Byzantine Generals] Requirements

• Termination: eventually each correct process sets its decision variable


• Agreement: the decision value of all correct processes is the same


• Integrity: if the commander is correct, then all correct processes decide on 
the value that the commander proposed


• Further reading:


L. Lamport, R. Shostak, and M. Pease. 

The Byzantine Generals Problem. 

ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3), 
382-401, 1982.
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Variant of Consensus: Interactive Consistency

• Every process proposes a single value


• Goal: correct processes agree on a vector of values (decision vector), one for 
each process


‣ Example: each of a set of processes want to obtain the same information 
about their respective states


• Requirements:


‣ Termination: eventually each correct process sets its decision variable


‣ Agreement: the decision vector of all correct processes is the same


‣ Integrity: if pi is correct, then all correct processes decide on vi as the ith 
component of their vector
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Relating Consensus to Other Problems

• All the problems concerned with making decisions in the context of arbitrary 
or crash failures


• We can sometimes generate solutions for one problem in terms of another


• Very useful property!! Because:


‣ it increases our understanding of the problems


‣ by reusing solutions we can potentially save on implementation effort and 
complexity
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Suppose There Exists Solution to...

• Ci(v1, v2, ..., vN): returns the decision value of pi in a run of the solution to the 
consensus problem, where v1,v2, ..., vN are the values that the processes 
proposed


• BGi(j, v): returns the decision value of pi in a run of the solution to the 
byzantine generals problem, where pj, the commander, proposes the value 
v


• ICi(v1, v2, ..., vN)[ j ]: returns the jth value in the decision vector of pi in a run of 
the solution to the interactive consistency problem, where v1,v2, ..., vN are 
the values that the processes proposed
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Linking the Problems: IC from BG

• We can construct a solution to the Interactive Consistency (IC) problem from 
the Byzantine Generals (BG) problem as follows:


‣ we run BG N times, once with each process pi (i = 1, 2, ..., N) as the 
commander
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ICi(v1, v2, ..., vN)[ j ] = BGi(j, vj)
(i, j = 1, 2, ..., N)



Linking the Problems: C from IC

• We can construct a solution to the Consensus (C) problem from the 
Interactive Consistency (IC) problem as follows:


‣ we run IC to produce a vector of values at each process


‣ then we apply an appropriate function (such as majority) on the vector’s 
values to derive a single value
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Ci(v1, v2, ..., vN) = majority(

                                          ICi(v1, v2, ..., vN)[1], 

                                          ..., 

                                          ICi(v1, v2, ..., vN)[N])

(i = 1, 2, ..., N)



Linking the Problems: BG from C
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• Show how it is possible to construct a solution to the Byzantine Generals 
(BG) problem from the Consensus (C) problem.



Byzantine Generals Problem in a Sync. System

• Up to f of the N processes can exhibit arbitrary (byzantine) failures: 


‣ a faulty process may send any message with any value at any time


‣ it may omit to send any message


• Correct processes can detect the absence of a message through a timeout


BUT they cannot conclude that the sender has crashed, since it may be silent 
for some time and then send messages again!


• Communication channels between pairs of processes are private and reliable
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Impossibility with Three Processes: Scenario 1

• 3 processes that send messages to one another

• 1 process allowed to fail
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p3 says p1 says u

fault

p1 correctly sends 
the same value v to each of 

the other 2 processes

p2 correctly echoes 
this to p3

p3 sends a value 

u ≠ v to p2

All p2 knows at this stage is that 
it has received differing values.



Impossibility with Three Processes: Scenario 2
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fault
p1 sends different 
values to lieutenants

p2 correctly echoes 
this to p3

p3 correctly 
echoes this to p2

Both p1 and p2 have received two different messages

• 3 processes that send messages to one another

• 1 process allowed to fail



General Result: Impossibility with N ≤ 3f

• M. Pease, R. Shostak and L. Lamport.

Reaching agreement in the presence of faults.

Journal of the ACM, 27(2), 228-34, 1980.
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• They generalized the basic impossibility result for 3 processes, to prove that

no solution of the BG problem is possible if the 
total number of processes (N) is less than three 

times the number of failures (f), i.e., N ≤ 3f



Solution with N ≥ 4 and f = 1 

• N.B. Have a look at the fully algorithm of Pease et al. that solves the BG 
problem in a synchronous system with N ≥ 3f + 1


• In the special case N ≥ 4 and f = 1, the correct generals can reach agreement 
in 2 rounds of messages:


‣ 1st round: the commander sends a value to each of the lieutenants


‣ 2nd round: each of the lieutenants sends the value it received to its peers


• Agreement is then reached using the function majority
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Example: Scenario 1
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The two correct 
lieutenant processes 

agree, deciding on the 
commander’s value

p2 decides on majority(v, u, v) = v

p4 decides on majority(v, v, w) = v



Example: Scenario 2
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The commander is 
faulty, but  

the three correct 
processes agree

p2, p3 and p4 decides on 
majority(u, v, w) = ⊥



Impossibility in Asynchronous Systems

• All solutions we have seen so far are limited to synchronous systems


• Fischer et al [1985] proved that no algorithm can guarantee to reach 
consensus in an asynchronous system, even with one process crash 
failure 


• Thus we immediately know from this result that there is no guaranteed 
solution in an asynchronous system to the BG and IC problems 


• This impossibility is circumvented by masking faults or using failure detectors
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