
DTU Compute
Department of Applied Mathematics and Computer Science

Coordination and Agreement

1 Introduction

2 Distributed Mutual Exclusion

3 Multicast Communication

4 Elections

5 Consensus and Related Problems

DTU Compute
Department of Applied Mathematics and Computer Science

AIM: Coordination and/or Agreement

• Collection of algorithms whose goals vary

but which share an aim that is fundamental in distributed systems

for a set of distributed processes to coordinate their actions or to agree
on one or more values

2

Multicast Communication

DTU Compute
Department of Applied Mathematics and Computer Science

Group (or Multicast) Communication

• Some lectures ago... Java API to IP multicast: example of implementation of
group communication

4

DTU Compute
Department of Applied Mathematics and Computer Science

Delivery Guarantees

• Group communication requires coordination and agreement

5

Delivery Guarantees

Agreement on the set of messages that every
process in the group should receive

Agreement on the delivery ordering across the group
members

GOAL For each of a group of processes

to receive copies of the messages sent to the group,

satisfying some delivery guarantees

DTU Compute
Department of Applied Mathematics and Computer Science

Multicast VS Broadcast

6

• Communication to all processes in the system, as opposed to a sub-group of
them, is known as broadcast

multicast
broadcast

DTU Compute
Department of Applied Mathematics and Computer Science

Essential Feature

• A process issues only one multicast operation to send a message to
each of a group of processes...

• ... instead of issuing multiple send operations to individual processes

7

send
send

send
send

send

DTU Compute
Department of Applied Mathematics and Computer Science

Example (from Java APIs)

• In Java, a multicast send primitive is provided by the MulticastSocket class:
aSocket.send(aMessage), where aSocket is an instantiated object of the class
MulticastSocket (datagram interface to IP multicast)

8

See lecture on Interprocess Communication
(--> JAVA API for IP Multicast)

DTU Compute
Department of Applied Mathematics and Computer Science

Open VS Closed Group

Closed Group:

Only members of the group
can multicast to it.

A process delivers to itself any
message that it multicasts to
the group.

Open Group:

Processes outside the
group may send to it.

DTU Compute
Department of Applied Mathematics and Computer Science

System Model

• Collection of processes, which communicate RELIABLY over 1-to-1 channels

10

Reliable (1-to-1) Communication (reliable 1-to-1 SEND primitive)

‣ Validity: if a correct process p sends a message m to a correct process q,
then q eventually delivers m

‣ No duplication: no message is delivered by a process more than once

‣ No creation: if some process q delivers a message m with sender p, then m
was previously sent to q by process p

• No Duplication + No Creation = Integrity property

DTU Compute
Department of Applied Mathematics and Computer Science

System Model (cont.)

• Processes may fail only by crashing

• Processes are members of groups, which are the destinations of messages
sent with the multicast operation

• Communication primitives:

‣ multicast(g, m): sends a message m to all members of the group g

‣ deliver(m): delivers a message sent by multicast to the calling process

11

Why deliver

(and not receive)?

DTU Compute
Department of Applied Mathematics and Computer Science

Message Delivery VS Message Receipt

12

A multicast message is not always handed to the application layer inside the
process as soon as it is received at the process’s node (it depends on the
multicast delivery semantics...)

DTU Compute
Department of Applied Mathematics and Computer Science

System Model (cont.)

• Every message m carries

‣ the unique identifier of the process sender(m) that sent it

‣ the unique destination group identifier group(m)

• We assume that processes do not lie about the origin or destinations of msgs

13

Basic Multicast

DTU Compute
Department of Applied Mathematics and Computer Science

Basic Multicast - Specification

A basic multicast is one that satisfies the following properties:

‣ Validity: if a correct process multicasts message m, then every correct
process eventually delivers m

‣ No Duplication: a correct process p delivers a message m at most once

‣ No Creation: if a correct process p delivers a message m with sender s,
then m was previously multicast by process s

15

• Validity is a LIVENESS property (something good eventually happens)

• No Duplication and No Creation are SAFETY properties (nothing bad
happens)

• No Duplication + No Creation = Integrity property

DTU Compute
Department of Applied Mathematics and Computer Science

Basic Multicast - Algorithm

• Communication primitives:

‣ B-multicast: basic multicast primitive

‣ B-deliver: basic delivery primitive

16

To B-multicast(g, m):

for each process p ∈ g, send(p, m)

On receive(m) at p:

B-deliver(m) at p

p

q

r

s

B-multicast

B-deliver

B-deliver

B-deliver

B-deliver

• Implementation based on reliable 1-to-1 send operation:

DTU Compute
Department of Applied Mathematics and Computer Science

Correctness of Basic Multicast Algorithm

17

• Correctness means that a basic multicast algorithm must satisfy the
validity, no duplication and no creation properties

‣ Derived from the properties of the underlying RELIABLE channels

A basic multicast is one that satisfies the following properties:

‣ Validity: if a correct process multicasts message m, then every correct
process eventually delivers m

‣ No Duplication: a correct process p delivers a message m at most once

‣ No Creation: if a correct process p delivers a message m with sender s,
then m was previously multicast by process s

DTU Compute
Department of Applied Mathematics and Computer Science

Correctness of Basic Multicast: No Creation

• Properties derived from the properties of the underlying RELIABLE channels

‣ B-multicast is based on 1-to-1 reliable send primitive

‣ No Creation [reliable channel]: if some process q delivers a message m
with sender p, then m was previously sent to q by process p

No Creation [B-multicast]: if a correct process p delivers a message m with
sender s, then m was previously multicast by process s

18

DTU Compute
Department of Applied Mathematics and Computer Science

Correctness of Basic Multicast: No Duplication

• Properties derived from the properties of the underlying RELIABLE channels

‣ No Duplication [reliable channel]: no message is delivered by a process
more than once

No Duplication [B-multicast]: a correct process p delivers a message m at
most once

19

DTU Compute
Department of Applied Mathematics and Computer Science

Correctness of Basic Multicast: Validity

• Properties derived from the properties of the underlying RELIABLE channels

‣ the sender sends the msg to every other process in the group (by means
of a reliable 1-to-1 send primitive)

‣ the validity property of the communication channels: if a correct process p
sends a message m to a correct process q, then q eventually delivers m

Validity [B-multicast]: if a correct process multicasts message m, then
every correct process eventually delivers m

20

DTU Compute
Department of Applied Mathematics and Computer Science

Basic Multicast: Ack-Implosion Problem

• The implementation may use threads to perform the send operations
concurrently, in an attempt to reduce the total time taken to deliver the msg

• Liable to suffer from ACK-IMPLOSION if the number of processes is large

‣ The acknowledgements sent as part of the reliable send operation are
liable to arrive from many processes at about the same time

‣ The multicasting process’s buffer will rapidly fill and it is liable to drop
acknowledgments

➡ It will therefore retransmit the msg, leading to yet more acks and
further waste of network bandwidth

21

DTU Compute
Department of Applied Mathematics and Computer Science

Scenario: Faulty Sender

22

p

q

r

s

B-multicast

B-deliver

• If the sender fails, some processes
might deliver the message and other
might not deliver it

THE PROCESSES DO NOT AGREE ON
THE DELIVERY OF THE MESSAGE!

• (Actually, even if the process sends the msg to all processes BEFORE
crashing, the delivery is NOT ensured because reliable channels do not
enforce the delivery when the sender fails!!)

We want to ensure AGREEMENT even when the sender fails

Reliable Multicast

DTU Compute
Department of Applied Mathematics and Computer Science

Reliable Multicast - Specification

• Based on 2 primitives: R-multicast and R-deliver

24

A reliable multicast is one that satisfies the following properties:

‣ No Duplication: a correct process p delivers a message m at most once

‣ No Creation: if a correct process p delivers a message m with sender s,
then m was previously multicast by process s

‣ Validity: if a correct process multicasts message m then it will eventually
deliver m

‣ Agreement: if a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m

• Validity --> Liveness for the sender

• Validity + Agreement --> Liveness for the system

DTU Compute
Department of Applied Mathematics and Computer Science

Reliable Multicast - Algorithm

• Implemented over B-multicast

25

To R-multicast a message, a process B-
multicasts the message to the processes
in the destination group (including itself)

DTU Compute
Department of Applied Mathematics and Computer Science

Reliable Multicast - Algorithm

• Implemented over B-multicast

26

When the message is B-delivered:

• the recipient in turn B-multicasts the message

to the group (if it is not the original sender)

• then it R-delivers the message

since a message may arrive more
than once, duplicates of the message
are detected and not delivered

DTU Compute
Department of Applied Mathematics and Computer Science

Scenario: Faulty Sender

27

• process p crashes and its message is not B-delivered by processes r and s

• however, process q retransmits the message (i.e., B-multicast it)

• consequently, the remaining correct processes also B-deliver it and
subsequently R-deliver it

THE CORRECT PROCESSES AGREE
ON THE DELIVERY OF THE MESSAGE!

p

q

r

s

R-multicast

R-deliver

R-deliver

R-deliver

DTU Compute
Department of Applied Mathematics and Computer Science

On the Agreement Property: Atomicity

Property of “atomicity”: all or nothing

• If a process that multicasts a message
crashes before is has delivered it, than it
it is possible that the message will not
be delivered to any process in the group

• But if it is delivered to some correct
process, then all the other correct
processes will deliver it

28

Note: NOT a property of the B-multicast
algorithm!

The sender may fail at any point while B-
multicast proceeds, so some processes
may deliver a msg while others do not

p

q

r

s

B-multicast

B-deliver

R-multicast

R-deliver

R-deliver

R-deliver

p
q
r
s

DTU Compute
Department of Applied Mathematics and Computer Science

Algorithm Analysis + HOMEWORK

• The algorithm satisfies validity, since a correct process will eventually B-
deliver the message to itself

• The algorithm satisfies integrity, because of

(1) the integrity property of the underlying communication channels

(2) the fact that duplicates are not delivered

What about agreement? It follows because... HOMEWORK! :-)

29

• The algorithm is correct in an asynchronous system BUT inefficient for
practical purpose: each message sent |g| times to each process (O(|g|2)
messages)

Ordered Multicast

DTU Compute
Department of Applied Mathematics and Computer Science

Ordered Multicast

• The B- and R- multicast algorithms deliver messages to processes in an
arbitrary order, due to arbitrary delays in the 1-to-1 send operations

• Common ordering requirements:

‣ FIFO ordering: if a correct process issues multicast(g, m) and then
multicast(g, m’) (multicast(g, m) ➝i multicast(g, m’)), then every correct
process that delivers m’ will deliver m before m’; partial relation

‣ Causal ordering: multicast(g, m) ➝ multicast(g, m’), then any correct
process that delivers m’ will deliver m before m’; partial relation

‣ Total ordering: if a correct process delivers message m before it delivers
m’, then any other correct process that delivers m’ will deliver m before m’.

• N.B.: causal ordering implies FIFO ordering

31

DTU Compute
Department of Applied Mathematics and Computer Science

Example: FIFO Ordering

• FIFO ordering: if a correct process pi issues multicast(g, m) and then
multicast(g, m’) (multicast(g, m) ➝i multicast(g, m’)), then every correct
process that delivers m’ will deliver m before m’

32

P1 P2 P3

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Causal Ordering

• Causal ordering: multicast(g, m) ➝ multicast(g, m’), then any correct process
that delivers m’ will deliver m before m’

33

P1 P2 P3

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Total Ordering

• Total ordering: if a correct process delivers message m before it delivers m’,
then any other correct process that delivers m’ will deliver m before m’

34

P1 P2 P3

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Bulletin Board

• Consider an application in which users post messages to bulletin boards

• Each user runs a bulleting-board application process

• Every topic of discussion has its own process group

• When a user posts a message to a bulletin board, the application multicasts
the user’s posting to the corresponding group

• Each user’s process is a member of the group for the topic he/she is
interested ==> the user will receive just the postings concerning that topic

35

DTU Compute
Department of Applied Mathematics and Computer Science

[Bulletin Board] Ordering Requirements

• Reliable multicast required if every user is to receive every posting eventually

36

FIFO ordering desirable
since then every posting
from a given user will be
received in the same order

Causal ordering needed to
guarantee this relationship

If multicast delivery was totally ordered, then the items would
be consistent between the users (users could refer
unambiguously, for example, to “message 24”)

DTU Compute
Department of Applied Mathematics and Computer Science

Implementing FIFO Ordering

• Two primitives: FO-multicast and FO-deliver

• Achieved with sequence numbers

• We assume non-overlapping groups

• A process p has variables (storing sequence numbers):

‣ Spg : how many messages p has sent to g

‣ Dqg : sequence number of the latest message p has delivered from process

 q that was sent to g

37

FIFO ordering: if a correct process pi issues multicast(g, m) and then
multicast(g, m’) (multicast(g, m) ➝i multicast(g, m’)), then every correct process
that delivers m’ will deliver m before m’

p

q

r

m m’

DTU Compute
Department of Applied Mathematics and Computer Science

Basic FIFO Multicast: FO-Multicast and FO-Deliver

• For p to FO-multicast a message to group g:

it piggy backs the value Spg onto the message;

it B-multicasts the message to g;

Spg = Spg + 1

38

• Upon a receipt of a message from q bearing the seq. number S, p checks:

IF (S = Dqg + 1) THEN it FO-delivers the message, setting Dqg := S

ELSIF (S > Dqg + 1) THEN

it places the message in its hold-back queue until

the intervening messages have been delivered and

S = Dqg + 1

If we use R-multicast instead
of B-multicast, then we obtain
a reliable FIFO multicast

DTU Compute
Department of Applied Mathematics and Computer Science

Condition for FIFO Ordering Satisfied Because...

1. All messages from a given sender are delivered in the same sequence

2. Delivery of a message is delayed until its sequence number has been
reached

• N.B.: this is so only under the assumption that groups are NON-overlapping!

39

• Upon a receipt of a message from q bearing the seq. number S, p checks:

IF (S = Dqg + 1) THEN it FO-delivers the message, setting Dqg := S

ELSIF (S > Dqg + 1) THEN it places the message in its hold-back queue
until the intervening messages have been delivered and S = Dqg + 1

DTU Compute
Department of Applied Mathematics and Computer Science

Implementing Causal Ordering

• Algorithm for non-overlapping closed groups (Birman et al., 1991)

• It takes into account of the happened-before relationship only as it is
established by multicast messages

• Each process maintain its own vector timestamp: the entries count the
number of multicast messages from each process that happened-before the
next message to be multicast

40

Causal ordering: multicast(g, m) ➝ multicast(g, m’), then any correct process
that delivers m’ will deliver m before m’

p

q

r

m m’
p

q

r

m

m’
p

q

r

m

m’

m’’

DTU Compute
Department of Applied Mathematics and Computer Science

Causal Ordering Using Vector Timestamps

41

the process add 1 to its entry in the timestamp and
B-multicasts the msg along with its timestamp to g

DTU Compute
Department of Applied Mathematics and Computer Science

Causal Ordering Using Vector Timestamps

42

pi has delivered any message
that pj had delivered

pi has delivered any earlier message sent by pj

DTU Compute
Department of Applied Mathematics and Computer Science

Implementing Total Ordering

• We assume non-overlapping groups

• Key idea: to assign totally ordered identifiers to multicast messages so that
each process makes the same ordering decision based upon these identifiers

• How: processes keep group-specific sequence numbers (rather than
process-specific sequence numbers as for FIFO ordering)

• Key question: how to assign sequence numbers to messages?

• Two possible approaches: (central) sequencer or distributed agreement

43

Total ordering: if a correct process delivers message m before it delivers m’,
then any other correct process that delivers m’ will deliver m before m’

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using a Sequencer

44

p1

p2 p3 p4

p5seq

<m, id(m)>

• To TO-multicast a message m to a group g, p1 attaches a unique identifier
id(m) to it

• The messages for g are sent to the sequencer for g as well as to the members
of g (the sequencer may be chosen to be a member of g)

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using a Sequencer

45

p1

p2 p3 p4

p5seq

• On B-deliver(<m, id(m)>) a process (but NOT THE SEQUENCER) places the
message <m, id(m)> in its hold-back queue

<m, id(m)>

<m, id(m)>

<m, id(m)>

<m, id(m)>

<m, id(m)>

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using a Sequencer

46

p1

p2 p3 p4

p5seq
sg

• The sequencer maintains a group-specific sequence number sg, which it uses
to assign increasing and consecutive sequence numbers to the messages
that it B-delivers

• Processes have their local group-specific sequence number rg

rg

rg rg rg

rg

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using a Sequencer

47

p1

p2 p3 p4

p5seq
sg

• On B-deliver(<m, id(m)>) the sequencer announces the sequence numbers by
B-multicasting “order” messages to g

<“order”, id(m), sg>

rg

rg rg rg

rg

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using a Sequencer

48

p1

p2 p3 p4

p5seq
sg

• A message will remain in a hold-back queue indefinitely until it can be TO-
delivered according to the corresponding sequence number (sg = rg)

<“order”, id(m), sg>
<m, id(m)>

<m, id(m)>

<m, id(m)>

<m, id(m)>

<m, id(m)>

rg

rg rg rg

rg

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using a Sequencer - Algorithm

• Algorithm for group member p

49

• Algorithm for sequencer of g

N.B.: since the sequence
numbers are well defined by
the sequencer, the criterion
of total ordering is met.

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using Distributed Agreement

• The obvious problem with a sequencer-based approach is that the sequencer
may become a bottleneck and is a critical point of failure

• Practical algorithms exist that address this problem (ask me if interested)

• Approach NOT based on a sequencer:

‣ Key Idea: the processes collectively agree on the assignment of sequence
numbers to messages in a distributed fashion

50

DTU Compute
Department of Applied Mathematics and Computer Science

Total Ordering Using Distributed Agreement

51

