
Logical Time
!
Nicola Dragoni
Embedded Systems Engineering
DTU Compute

1. Introduction

2. Clock, Events and Process States

3. Logical Clocks

4. Efficient Implementation

2013 ACM Turing Award: Leslie Lamport

2

Award Citation

!
For fundamental contributions to the theory and practice of

distributed and concurrent systems,
notably the invention of concepts such as causality and

logical clocks, safety and liveness, replicated state
machines, and sequential consistency.

Background

!
Leslie Lamport is a Principal Researcher at Microsoft Research.
He received the IEEE Emanuel R. Piore Award for his
contributions to the theory and practice of concurrent
programming and fault-tolerant computing. He was also
awarded the Edsger W. Dijkstra Prize in Distributed Computing
for his paper “Reaching Agreement in the Presence of Faults”. He
won the IEEE John von Neumann Medal and was also elected to
the U.S. National Academy of Engineering and the U.S. National
Academy of Sciences.

Why Is Time Interesting?

• Ordering of events: what happened first?

‣ Storage of data in memory, file, database, ...

‣ Requests for exclusive access - who asked first?

‣ Interactive exchanges - who answered first?

‣ Debugging - what could have caused the fault?

• Causality is linked to temporal ordering:

if ei causes ej, then ei must happen before ej

(Causality, i.e. causal precedence relation, among events in a distributed
system is a powerful concept in reasoning, analyzing and drawing inferences
about a computation)

3

• Each computer has its own internal (physical) clock, which can be used by local
processes to obtain a value of the current time

• Processes (on different computers) can associate timestamps with their events

Computer Clocks and Timing Events

4

• This is because:

‣ computer clocks drift from perfect time

‣ their drift rates differ from one another

Clock drift rate: rate at which a
computer clock deviates from a
perfect reference clock

Even if two processes read their clocks
at the same time, their local clocks
may supply different time values

• Consequence ==> if the physical clocks are not precisely synchronized, the causality
relation between events may not be accurately captured

Example: Real-Time Ordering of Events

5

• Consider the following set of exchanges between a group of email users Bob,
Alice, Peter, and Paul on a mailing list:

1.Bob sends a message with the subject Meeting
2.Alice and Peter reply by sending a message with the subject Re: Meeting

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1
Bob

Alice

Peter

Paul

Example: Real-Time Ordering of Events (cont.)

6

Paul’s Inbox
From Subject
Peter Re:Meeting
Bob Meeting
Alice Re: Meeting

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1
Bob

Alice

Peter

Paul

• Due to the independent delays in
message delivery, the messages may
be delivered in the following order:

Example: Real-Time Ordering of Events (cont.)

7

• If the clocks could be synchronized:

messages m1, m2 and m3 would carry times
t1, t2 and t3 where t1 < t2 < t3 (time ordering)

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1
Bob

Alice

Peter

Paul

Paul’s Inbox
From Subject
Bob Meeting
Alice Re:Meeting
Peter Re: Meeting

t1

t2

t3

The Problem

• The concept of causality between events is fundamental to the design and
analysis of parallel and distributed computing and operating systems

• Usually causality is tracked using physical time

• In distributed systems, it is not possible to have a global physical time!

8

What We Want…

• Capture the notion of causality: whether an event (sending or receiving a
message) at one process occurred before, after or concurrently with another
event at another process

• The execution of a system described in terms of events and their ordering
despite the lack of accurate clocks

9

No Accurate Clocks... but Event Ordering!

Idea... Logical Time!

• Since clocks cannot be synchronized perfectly across a distributed system,
logical time can be used to provide an ordering among the events (at
processes running in different computers in a distributed system) without
recourse to clocks

10

• Let us consider our email ordering problem.. what do we know logically?

✓A message is received after it was sent

!

Bob sends m1 before Alice receives m1
Alice sends m2 before Bob receives m2

✓Replies are sent after receiving messages

!

Alice receives m1 before sending m2

Example: Real-Time Ordering of Events (cont.)

11

• Logical time takes this idea further by assigning a number to each event
corresponding to its logical ordering

• As a result, later events have higher numbers than earlier ones

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1
Bob

Alice

Peter

Paul

The Idea... in 1 Slide

• Every process has a logical clock that is advanced using a set of rules

12

• Every event is assigned a timestamp

• WHAT WE WANT: causality between events can be generally inferred from
their timestamps

• Timestamps obey the fundamental monotonicity property:

if an event a causally affects an event b,

then the timestamp of a is smaller than the timestamp of b

...more formally...

Distributed System Model

• We consider the following asynchronous distributed system:

‣ n processes pi, i = 1, ..., n

‣ each process executes on a single processor

‣ processors do not share memory --> processes communicate only by
message passing

‣ Actions of a process pi: communicating actions (Send or Receive) or state
transforming actions (such as changing the value of a variable)

• Event: occurrence of a single action that a process carries out as it executes

14

What Do We Know About Time?

• We cannot synchronize clocks perfectly across a distributed system

➡ We cannot in general use physical time to find out the order of any arbitrary
pair of events occurring within a distributed system [Lamport, 1978]

15

• The sequence of events within a single process pi can be placed in a total
ordering, denoted by the relation →i (“occurs before”) between the events

e →i e’ if and only if the event e occurs before e’ at pi

In other words: if two events occurred at the same process pi, then they
occurred in the order in which pi observes them

• Whenever a message is sent between two processes, the event of sending
the message occurred before the event of receiving the message

Happened-Before Relation (➝)

• Lamport’s happened-before relation ➝ (or causal ordering):

HB1: If ∃ process pi : e ➝i e’, then e ➝ e’

HB2: For any message m, send(m) ➝ receive(m)

HB3: If e, e’, e’’ are events such that e ➝ e’ and e’ ➝ e’’ then e ➝ e’’

16

• Thus, if e ➝ e’, then we can find a series of events e1, e2, ..., en occurring at
one or more processes such that

‣ e = e1

‣ e’ = en

‣ for i = 1, 2, ..., N-1 either HB1 or HB2 applies between ei and ei+1

In other words: either they occur in succession at the same process, or there
is a message m such that ei = send(m) and ei+1 = receive(m)

[Happened Before Relation] Example

• a ➝ b, since the events occur in this order at process p1 (a ➝1 b)

• c ➝ d

• b ➝ c, since these events are the sending and reception of message m1

• d ➝ f, similarly

• Combining these relations, we may also say that, for example, a ➝ f
17

Happened-Before Relation (➝)

• Note that the ➝ relation is an IRREFLEXIVE PARTIAL ORDERING on the set
of all events in the distributed system

‣ Irreflexivity: ¬(a ➝ a)

‣ Partial ordering: not all the events can be related by ➝

18

- ¬(a ➝ e) and ¬(e ➝ a) since they occur at different processes and there
is no chain of messages intervening between them

- We say a and e are not ordered by ➝; a and e are concurrent (a || e)

Logical Clocks

• Each process pi keeps its own logical clock, Li, which it uses to apply so-
called Lamport timestamps to events

• Logical clock: a MONOTONICALLY increasing software counter, which
associates a value in an ORDERED domain with each event in a system

19

• N.B.: the values of a logical clock need bear no particular relationship to any
physical clock

Definition [Logical Clock] A local logical clock L is a function that maps an
event e ∈ H in a distributed system to an element in the time domain T,
denoted as L(e) and called the timestamp of e, and is defined as follows:

L : H ➝ T

such that the following monotonicity property (clock consistency property) is
satisfied:

for two events e and e’ ∈ H, e ➝ e’ ⇒ L(e) < L(e’)

Logical Clocks Rules

• To match the definition of ➝, we require the following clock rules:

CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’)

CR2: If a is the sending of a message by pi and b is the receipt of the same
message by pj, then Li(a) < Lj(b)

CR3: If e, e’, e’’ are 3 events : L(e) < L(e’) and L(e’) < L(e’’) then L(e) < L(e’’)

20

Ok, but how to use
these rules in practice?

e ➝ e’ ⇒ L(e) < L(e’)

Logical Clocks... in Practice!

21

• To capture the ➝ relation numerically: processes update their logical clocks
and transmit the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li

 (b) On receiving (m, t), a process pj

- computes Lj := max(Lj, t)

- applies LC1

- timestamp the event receive(m)

• Clocks which follow these rules are known as LAMPORT LOGICAL CLOCKS

• Although we increment clocks by 1, we can consider any value d > 0

[Lamport Clocks] Example 1

22

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then

 applies LC1 before timestamping the event receive(m)

[Lamport Clocks] Example 2

23

LOGICAL CLOCKS
NORMAL BEHAVIOUR:

Time1 2 5 6 7

1 2 7

1 3 4 5 6 7

P

Q

R

2

6

4

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then

 applies LC1 before timestamping the event receive(m)

[Lamport Clocks] Example 3

24

LOGICAL CLOCKS
NORMAL BEHAVIOUR (2):

Time1 2 3 6 7

1 2 3 4 5 6 7

1 2 3 5 6 7

P

Q

R

1

511

4 2

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then

 applies LC1 before timestamping the event receive(m)

[Lamport Clocks] Example 4

25

LOGICAL CLOCKS
LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM:

Time1 11 21 31 41

1 2 32 33

1 3 4 5 6 34

P

Q

R

2

31

4

LAMPORT CLOCKS:
Local and global time modelled by NATURAL NUMBERS.
IMPLEMENTATION RULES FOR C1, C2:
IR1. Before each event in Pi:

Ti := Ti + d, (d > 0)

IR2. Each message sent by Pi is timestamped with current value of Ti.
On receipt of the message with timestamp TM by Pj :

Tj := (max (Tj , TM) + d)
Course 02222, DTU, Spring 2009. – p. 4/2

LC1: Li is incremented before each event is issued at process pi: Li := Li + 1

LC2: (a) When pi sends a msg m, it piggybacks on m the value t = Li

 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then

 applies LC1 before timestamping the event receive(m)

LOCAL CLOCKS TEND TO RUN AS FAST AS THE FASTEST OF THEM

Shortcoming of Lamport Clocks (1)

26

A significant problem with Lamport clocks is that
if L(e) < L(e’), then we cannot infer that e ➝ e’

L(e) < L(b) but not e ➝ b

e ➝ e’ ⇒ L(e) < L(e’)Clock consistency property:

Shortcoming of Lamport Clocks (2)

27

• Causal ordering of messages: if send(m1) ➝ send(m2) and receive(m1) and
receive(m2) are on the same process pi, then receive(m1) ➝i receive(m2)

27

send(m1) send(m2)

receive(m1) receive(m2)
pi

pj

send(m1) send(m2)

receive(m2) receive(m1)
pi

pj

IMPOSSIBLE TO CAPTURE WITH LAMPORT CLOCKS!

So... What Else Do We Need?

28

• Problem: Lamport clocks describes global time by a single
number, which is not enough and “hides” essential information.

• Idea: processes keep information on what they know about the
other clocks in the system and use this information when
sending a message

Mattern and Fidge Vector Clocks

• Overcome the shortcoming of Lamport clocks

• Lamport clocks:

e ➝ f then L(e) < L(f)

• Vector clocks:

e ➝ f iff V(e) < V(f)

29

Clock

consistency

Strong

consistency

Vector Clocks

• A vector clock for a system of N processes: array of N integers

• Each process pi keeps its own vector clock Vi, which it uses to timestamp
local events

30

Vi

i j

• Then Vi[j] describes pi’s KNOWLEDGE of pj’s LOCAL LOGICAL CLOCK

• Example: if an event of p2 is timestamped with (1, 1, 0) then p2 knows that the
value of the logical clocks are: 1 for p1, 1 for p2, 0 for p3

Note that...

• Vi[j] (j ≠ i):

‣ Latest clock value received by pi from process pj

‣ Number of events that have occurred at pj that pi has potentially been
affected by

- Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages yet!

31

Vi

i j

[Vector Clocks] Implementation Rules

VC1: Initially, Vi[j] := 0, for i, j = 1, 2,, N

VC2: Just before pi timestamps an event, it sets Vi[i] := Vi[i] + 1

VC3: pi includes the value t = Vi in every message it sends

VC4: When pi receives a timestamp t in a message

- pi sets Vi[j] := max(Vi[j], t[j]) for j = 1, 2,, N

- applies VC2

- timestamp the event receive(m)

32

[Vector Clocks] Example

33

V(e) < V(f)???

Ordering on Vectors

• For vector clocks using rules VC1-4, it follows that

!

• Ordering relation (≤) on vectors:

!

• In particular:

‣ V = V’ ⇔ V[j] = V’[j] for j = 1, 2, ..., N

‣ V < V’ ⇔ V ≤ V’ ∧ V ≠ V’

‣ V || V’ ⇔ ¬(V < V’) ∧ ¬(V’ < V)
34

e ➝ e’ ⇔ V(e) < V(e’)

V ≤ V’ ⇔ V[j] ≤ V’[j] for j = 1, 2, ..., N

[Vector Clocks Ordering] Example

• V(a) < V(f), reflecting the fact that a ➝ f

• c || e because neither V(c) ≤ V(e) nor V(e) ≤ V(c)

35

[Vector Clocks] Example

36

[Vector Clocks] Violation of Causal Ordering

37

M-F CLOCKS: EXAMPLE 2
Time<1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,5,0>

<0,1,0><0,2,0>

<2,3,0>

<2,4,0>

<2,5,0>

<0,0,1> <0,0,2>

<0,0,3>

<0,0,4>

<2,4,5>

P

Q

R

<2,0,0>

<2,4,0>

<2,5,0><1,0,0>

<1,0,0>

VIOLATION OF CAUSAL ORDERING OCCURS IF MESSAGE
ARRIVES WITH:

V TM <V Ti

Here: V TM [1]<V TR[1]

Course 02222, DTU, Spring 2009. – p. 15/2

• Violation of causal ordering of messages occurs if msg M arrives with VM < Vi.

• Here:	VM[1] < VR[1]

Drawback of Vector Clocks

• The message overhead grows linearly with the number of processes in the
system!!

38

• B. Charron-Bost. Concerning the size of logical clocks in distributed
systems. Information Processing Letters, 39, pp. 11-16, 1991

Showed that if vector clocks have to satisfy the strong consistency
property, then in general the vector timestamps must be at least of size
n, the total number of processes

==>

• Therefore, in general the size of a vector timestamp is the number of
processes involved in a distribute computation

Efficient Implementation of Vector Clocks

Singhal-Kshemkalyani’s Differential Technique

40

• M. Singhal and A. Kshemkalyani. An efficient implementation of vector
clocks. Information Processing Letters, 43, pp. 47-52, 1992

• Observation

When the number of processes is large and only few of them interact, then
between successive msg sends to the same processes, only a few entries of
the vector clock at the sender process are likely to change

• Solution

When a process pi sends a message to a process pj, it piggybacks only those
entries of its vector clock that differ since the last message sent to pj

• Assumption

Communication channels follow FIFO discipline for message delivery

Singhal-Kshemkalyani’s Differential Technique

• The technique works as follows:

- if entries i1, i2 , ..., im, m ≤ n, of the vector clock at pi have changed to v1, v2
, ..., vm, respectively, since the last message sent to pj

then process pi piggybacks a timestamp of the form

{(i1, v1), (i2, v2), ..., (im, vm)}

to the next message to pj

- when pj receives this message, it updates its vector clock Vj as follows:

Vj[ik] = max(Vj[ik], vk) for k = 1, 2, ..., m

41

Example: Vector Clocks Progress in S-K Technique

42

Analysis

• Worst case (m = n): every element of the vector clock has been updated at pi
since the last message to pj

==> next msg from pi to pj will need to carry the entire vector of size n

• Average case (m < n): the size of the timestamp on a msg will be less than n

• Direct implementation: requires each process to remember the vector
timestamp (of size at most n) in the message last sent to every other process

==> implementation will result in O(n2) storage overhead at each process

43

Can we do better?

How to Cut Down the Storage Overhead?

Implementation of Singhal-Kshemkalyani’s Idea

• Process pi maintains the following two additional vectors:

- LSi[1 ... n] (“Last Sent”)

LSi[j] : the value of Vi[i] when process pi last sent a message to pj

- LUi[1 ... n] (“Last Update”)

LUi[j] : the value of Vi[i] when process pi last updated the entry Vi[j]

45

• N.B.:

- LUi[i] = Vi[i] at all times

- LSi[j] needs to be updated only when pi sends a message to pj

- LUi[j] needs to be updated only when the receipt of a message causes pi
to update entry Vi[j]

Implementation of Singhal-Kshemkalyani’s Idea

• Key condition:

• When pi sends a message to pj, it sends only a set of tuples

!

as the vector timestamp to pj (instead of sending a vector of n entries in a
message)

46

LSi[j] < LUi[k] k = 1,, n

{(k, Vi[k]) | LSi[j] < LUi[k]} k = 1,, n

Exercise

• Singhal and Kshemkalyani’s technique cuts down the storage overhead at
each process from O(n2) to ...

• Explain why.

47

