
DTU Informatics
Department of Informatics and Mathematical Modelling

Interprocess Communication
Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

1. Point-to-point Communication
• Characteristics of Interprocess Communication
• Sockets
• Client-Server Communication over UDP and TCP

2. Group (Multicast) Communication

DTU Informatics
Department of Informatics and Mathematical Modelling

Unicast VS Multicast

2

DTU Informatics
Department of Informatics and Mathematical Modelling

The Characteristics of Interprocess Communication

• Message passing between a pair of processes supported by two
communication operations: send and receive

• Defined in terms of destinations and messages.

• In order for one process A to communicate with another process B:

‣ A sends a message (sequence of bytes) to a destination

‣ another process at the destination (B) receives the message.

• This activity involves the communication of data from the sending process to
the receiving process and may involve the synchronization of the two
processes (==> CSP!).

3

DTU Informatics
Department of Informatics and Mathematical Modelling

Sending VS Receiving

• A queue is associated with each message destination.

• Sending processes cause messages to be added to remote queues.

• Receiving processes remove messages from local queues.

4

Communication between the sending
and receiving process may be either
synchronous or asynchronous.

DTU Informatics
Department of Informatics and Mathematical Modelling

Synchronous Communication

• The sending and receiving processes synchronize at every message.

• In this case, both send and receive are blocking operations:

‣ whenever a send is issued the sending process is blocked until the
corresponding receive is issued;

‣ whenever a receive is issued the receiving process blocks until a message
arrives.

5

DTU Informatics
Department of Informatics and Mathematical Modelling

Asynchronous Communication

• The send operation is non-blocking:

‣ the sending process is allowed to proceed as soon as the message has
been copied to a local buffer;

‣ the transmission of the message proceeds in parallel with the sending
process.

6

• The receive operation can have blocking and non-blocking variants:

‣ [non-blocking] the receiving process proceeds with its program after
issuing a receive operation;

‣ [blocking] receiving process blocks until a message arrives.

DTU Informatics
Department of Informatics and Mathematical Modelling

Message Destinations?

• Usually take the form (address, local port).

‣ For instance, in the Internet protocols messages are sent to (Internet
address, local port) pairs.

• Local port: message destination within a computer, specified as an integer.
It is commonly used to identify a specific service (ftp, ssh, ...).

• A port has exactly one receiver but can have many senders.

• Processes may use multiple ports from which to receive messages.

• Any process that knows the number of a port can send a message to it.

• Servers generally publicize their port numbers for use by clients.

7

DTU Informatics
Department of Informatics and Mathematical Modelling

Socket Abstraction

• At the programming level, message destinations can usually be defined by
means of the concept of socket.

• A socket is an abstraction which provides an endpoint for communication
between processes.

• A socket address is the combination of an IP address (the location of the
computer) and a port (a specific service) into a single identity.

• Interprocess communication consists of transmitting a message between a
socket in one process and a socket in another process.

8

DTU Informatics
Department of Informatics and Mathematical Modelling

Sockets and Ports

• Messages sent to a particular Internet address and port number can be received only
by a process whose socket is associated with that Internet address and port number.

9

• Processes may use the same socket for sending and receiving messages.

• Any process may make use of multiple ports to receive messages, BUT a process
cannot share ports with other processes on the same computer.

• Each socket is associated with a particular protocol, either UDP or TCP.

DTU Informatics
Department of Informatics and Mathematical Modelling

UDP vs TCP in a Nutshell

10

• TCP (Transport Control Protocol) and
UDP (User Datagram Protocol) are
two transport protocols.

• TCP is a reliable, connection-
oriented protocol.

• UDP is a connectionless protocol
that does not guarantee reliable
transmission.

Internet protocol layers

DTU Informatics
Department of Informatics and Mathematical Modelling

UDP Datagram Communication

• A datagram is an independent, self-contained message sent over the network
whose arrival, arrival time, and content are not guaranteed.

• A datagram sent by UDP is transmitted from a sending process to a receiving
process without acknowledgement or retries.

• If a failure occurs, the message may not arrive.

11

• Use of UDP: for some applications, it is acceptable to use a service that is
liable to occasional omission failures.

‣ DNS (Domain Name Service), which looks up DNS names in the Internet, is
implemented over UDP.

‣ VOIP (Voice Over IP) also runs over UDP.

Case Study: JAVA API for UDP Datagrams

DTU Informatics
Department of Informatics and Mathematical Modelling

The Java API provides datagram communication by means
of two classes: DatagramPacket and DatagramSocket.

DTU Informatics
Department of Informatics and Mathematical Modelling

DatagramPacket Class

13

• This class provides a constructor that makes an instance out of an array of bytes
comprising a message, the length of the message and the Internet address and local
port number of the destination socket.

array of bytes containing message length of message Internet address port number

• Instances of DatagramPacket may be transmitted between processes when one
process sends it and another receives it.

...
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m, args[0].length(), aHost, serverPort);
...

DTU Informatics
Department of Informatics and Mathematical Modelling

DatagramPacket Class

14

• The class provides another constructor for use when receiving a message.

• Its arguments specify an array of bytes in which to receive the message and the length
of the array.

• A message can be retrieved from DatagramPacket by means of the method getData.

• The methods getPort and getAddress access the port and Internet address.

...
byte[] buffer = new byte[1000];
DatagramPacket request = new DatagramPacket(buffer, buffer.length);
...

...
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());
...

DTU Informatics
Department of Informatics and Mathematical Modelling

DatagramSocket Class

15

aSocket = new DatagramSocket();

aSocket = new DatagramSocket(6789);

• This class supports sockets for sending and receiving UDP datagrams.

• It provides a constructor that takes a port number as argument, for use by
processes that need to use a particular local port.

• It also provides a no-argument constructor that allows the system to choose
a free local port.

• Main methods of the class:

‣ send and receive: for transmitting datagrams between a pair of sockets.

‣ setSoTimeout: to set a timeout (the receive method will block for the time
specified and then trow an InterruptedIOException).

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: UDP Client Sends a Message to the Server and Gets a Reply

16

args[0] is a message
args[1] is a DNS name of the server

message converted in array of bytes

IP address of the hosthow to send a
msessage

how to receive
a message

close the socket

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: UDP Server Repeatedly Receives a Request and Sends it
Back to the Client

17

socket bound to the server port 6789

receive the msg

sends back the same
message to the client

close the socket

End of the Case Study

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics
Department of Informatics and Mathematical Modelling

TCP Stream Communication

• TCP is a reliable, connection-oriented protocol.

• The API for stream communication assumes that when a pair of processes are
establishing a connection, one of them plays the client role and the other plays the
server role, but thereafter they could be peers.

‣ The client role involves creating a stream socket bound to any port and then
making a connect request asking for a connection to a server at its server port.

‣ The server role involves creating a listening socket bound to a server port and
waiting for clients to requests connections.

‣ When the server accepts a connection, a new stream socket is created for the server
to communicate with a client, meanwhile retaining its socket at the server port for
listening for connect requests from other clients.

19

DTU Informatics
Department of Informatics and Mathematical Modelling

TCP Stream Communication

• In other words, the API of the TCP protocol provides the abstraction of a
stream of bytes to which data may be written and from which data may be
read.

• The pair of sockets in client and server are connected by a pair of streams,
one in each direction.

‣ Thus each socket has an input stream and an output stream.

‣ A process A can send information to a process B by writing to A’s output
stream.

‣ A process B obtains the information by reading from B’s input stream.

20

DTU Informatics
Department of Informatics and Mathematical Modelling

Use of TCP

• Many frequently used services run over TCP connections, with reserved port
numbers, such as:

‣ HTTP (HyperText Transfer Protocol, used for communication between web
browsers and web servers)

‣ FTP (File Transfer Protocol, it allows directories on a remote computer to
be browsed and files to be transferred from one computer to another over
a connection)

‣ Telnet (it provides access by means of a terminal session to a remote
computer)

‣ SMTP (Simple Mail Transfer Protocol, used to send email between
computers).

21

Case Study: JAVA API for TCP streams

DTU Informatics
Department of Informatics and Mathematical Modelling

The Java API provides TCP stream communication by means
of two classes: ServerSocket and Socket.

DTU Informatics
Department of Informatics and Mathematical Modelling

ServerSocket Class

• Used by a server to create a socket at a server port for listening for connect
requests from clients.

• Its accept method gets a connect request from the queue of messages, or if
the queue is empty, it blocks until one arrives.

• The result of executing accept is an instance of the class Socket - a socket
for giving access to streams for communicating with the client.

23

DTU Informatics
Department of Informatics and Mathematical Modelling

Socket Class

• The client uses a constructor to create a socket, specifying the hostname and
port of a server.

• This constructor not only creates a socket associated with a local port but
also connects it to the specified remote computer and port number.

• It can throw an UnkownHostException if the hostname is wrong or an
IOException if an IO error occurs.

• The class provides methods getInputStream and getOutputStream for
accessing the two streams associated with a socket.

24

...
int serverPort = 7896;
s = new Socket(args[1], serverPort);
...

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: TCP Client Makes Connection to Server, Sends Request and
Receives Reply

25

socket bound to hostname
and server port 7896input & output streams

send message & wait for
reply (write to output

stream & read from input
stream)

close the socket

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: TCP Server Makes a Connection for Each Client and Then
Echoes the Client’s Request

26

server socket
on port 7896

server listens for
connect requests

When a connect request arrives, server makes a new thread in which to
communicate with the client.

DTU Informatics
Department of Informatics and Mathematical Modelling

Example: TCP Server Makes a Connection for Each Client and Then
Echoes the Client’s Request

27

socket’s input and
output streams

thread waits to read a msg and
writes it back

close the socket

End of the Case Study

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics
Department of Informatics and Mathematical Modelling

Closing a Socket

29

• When an application closes a socket: it will not write anymore data to its
output stream.

‣ Any data in the output buffer is sent to the other end of the stream and out
in the queue at the destination socket with an indication that the stream is
broken.

• When a process has closed its socket, it will no longer able to use its input
and output streams.

• The process at the destination can read the data in its queue, but any further
reads after the queue is empty will result in an error/exception (for instance,
EOFException in Java).

• When a process exits or fails, all of its sockets are eventually closed.

• Attempts to use a closed socket or to write to a broken stream results in an
error/exception (for instance, IOException in Java).

DTU Informatics
Department of Informatics and Mathematical Modelling

Interprocess Communication

1. Point-to-point Communication
• Characteristics of Interprocess Communication
• Sockets
• Client-Server Communication over UDP and TCP

2. Group (Multicast) Communication

DTU Informatics
Department of Informatics and Mathematical Modelling

Multicast

• A multicast operation sends a single message from
one process to each of the members of a group of
processes, usually in such a way that the membership
of the group is transparent to the sender.

• There is a range of possibilities in the desired
behaviour of a multicast.

31

• The simplest provides no guarantees about message delivery or ordering.

DTU Informatics
Department of Informatics and Mathematical Modelling

What Can Multicast Be Useful for?

• Multicast messages provides a useful infrastructure for constructing
distributed systems with the following characteristics:

1.Fault tolerance based on replicated services

‣ A replicated service consists of a group of members.

‣ Client requests are multicast to all the members of the group, each of
which performs an identical operation.

‣ Even when some of the members fail, clients can still be served.

32

DTU Informatics
Department of Informatics and Mathematical Modelling

What Can Multicast Be Useful for?

• Multicast messages provides a useful infrastructure for constructing
distributed systems with the following characteristics:

2.Better performance through replicated data

‣ Data are replicated to increase the performance of a service - in some
cases replicas of the data are placed in users’ computers.

‣ Each time the data changes, the new value is multicast to the processes
managing the replicas.

33

DTU Informatics
Department of Informatics and Mathematical Modelling

What Can Multicast Be Useful for?

• Multicast messages provides a useful infrastructure for constructing
distributed systems with the following characteristics:

3.Propagation of event notifications

‣ Multicast to a group may be used to notify processes when sometimes
happens.

‣ For example, a news system might notify interested users when a new
message has been posted on a particular newsgroup.

34

DTU Informatics
Department of Informatics and Mathematical Modelling

IP Multicast

• IP multicast is built on top of the Internet Protocol, IP.

• Note that IP packets are addressed to computers - ports belong to the TCP
and UDP levels.

• IP multicast allows the sender to transmit a single IP packet to a set of
computers that form a multicast group.

• The sender is unaware of the identities of the individual recipients and of the
size of the group.

• A multicast group is specified by an Internet address whose first 4 bits are
1110 (in IPv4).

35

28 bits

DTU Informatics
Department of Informatics and Mathematical Modelling

IP Multicast - Membership

• Being a member of a multicast group allows a computer to receive IP packets
sent to the group.

• The membership of multicast groups is dynamic, allowing computers to join
or leave at any time and to join an arbitrary number of groups.

• It is possible to send datagrams to a multicast group without being a member.

36

DTU Informatics
Department of Informatics and Mathematical Modelling

IP Multicast - Programming Level

• At the application programming level, IP multicast is available only via UDP:

‣ An application program performs multicasts by sending UDP datagrams
with multicast addresses and ordinary port numbers.

‣ An application program can join a multicast group by making its socket
join the group, enabling it to receive messages to the group.

37

DTU Informatics
Department of Informatics and Mathematical Modelling

IP Multicast - IP Level

• At the IP level:

‣ A computer belongs to a multicast group when one or more of its
processes has sockets that belong to that group.

‣ When a multicast message arrives at a computer:

copies are forwarded to all of the local sockets that have joined the
specified multicast address and are bound to the specified port number.

38

Case Study: JAVA API for IP Multicast

DTU Informatics
Department of Informatics and Mathematical Modelling

The Java API provides a datagram interface to IP multicast
through the class MulticastSocket.

DTU Informatics
Department of Informatics and Mathematical Modelling

The Class MulticastSocket

• A subclass of DatagramSocket with the additional capability of being able to
join multicast groups.

• It provides two alternative constructors, allowing sockets to be created to use
either a specified local port or any free local port.

40

...
MulticastSocket s =null;
s = new MulticastSocket(6789);
...

DTU Informatics
Department of Informatics and Mathematical Modelling

Joining a Group

• A process can join a group with a given multicast address by invoking the
joinGroup method of its multicast socket.

‣ In this way, the socket joins a multicast group at a given port and it will
receive datagrams sent by processes on other computers to that group at
that port.

41

...
MulticastSocket s =null;
s = new MulticastSocket(6789);
InetAddress group = InetAddress.getByName(args[1]);
s.joinGroup(group);
...

• A process can leave a specified group by invoking the leaveGroup method of
its multicast socket.

DTU Informatics
Department of Informatics and Mathematical Modelling

Leaving a Group

• A process can leave a specified group by invoking the leaveGroup method of
its multicast socket.

42

...
MulticastSocket s =null;
InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
...
s.leaveGroup(group);

DTU Informatics
Department of Informatics and Mathematical Modelling

Example:
Multicast Peer Joins a Group and Sends and Receives Datagrams

43

args[0] = msg contents
args[1] = multicast address

MulticastSocket creation on
port 6789

sending a
DatagramPacket

message

joining a multicast
group

DTU Informatics
Department of Informatics and Mathematical Modelling

44

Example:
Multicast Peer Joins a Group and Sends and Receives Datagrams

peer attempts to receive 3 multicast
messages from its peers via its socket

DTU Informatics
Department of Informatics and Mathematical Modelling

• When several instances of this program are run simultaneously on different
computers, all of them join the same group and each of them should receive
its own message and the messages from that joined after it.

45

Example:
Multicast Peer Joins a Group and Sends and Receives Datagrams

End of the Case Study

DTU Informatics
Department of Informatics and Mathematical Modelling

