HB/EWSHOP/FOLDING/1

Simplifying Expressions by Tree-Rewriting

Rewrite-rules exploiting commutative and associative rule for + to compute
addition of constants; strategy: move constants to the left/ move constants to

the uppermost left operand:
/®\ —> k2+k2

1k

B: :>
OO
—

K- /Q@
k2 e
s ﬁb
D: —> Kk / \
(1) ()
K @ @
| (+)

HB/EWSHOP/FOLDING/2

Simplifying Expressions by Tree-Rewriting

Example: e
Apply the rules bottom-up

HB/EWSHOP/FOLDING/3

Simplifying Expressions by Tree-Rewriting
Example: Apply the rules bottom-up

(+) (+)

(@) Jh @)
k3 E

K1+k2 (+)

ONYEN

k1+k2

k1+k2+k3 e
k1+k2+k3 e @

S ¥

oL
O

HB/EWSHOP/FOLDING/4
Simplifying Expressions/Folding Bin-Expressions
Thisis an outline of a proposal for ssimplifying binary expressons. The ideais
at ead (+,-) level and (0J/) level to move all constantsto the | eft.

Splitting

Operator +,-: [1: el e2

split ead gperand el and €2 into atriple: [constant, operator, optional expr]
operand triple

cle [c, O,e]

c [c, +, nil] Splitting depends on

e (all other expr's) |[0,+,€] the context operator
Operator *,/: 0. ellde2

split ead gperand el and €l into atriple: [constant, operator, optional expr]
operand triple

cOe [c, O,e]

C [c, O, nil]

e (al other expr's) |[1,0€]

Folding
Simplify/Fold BinExpr(oprt,el,e2) , oprtl{ +,-,00/} :
1) fold subexpressions: s1= el.fold() , s2= e2.fold()

I1) split folded subexpressons
[sl.c, sl.o, sl.e]= split (oprt) s1, [S2.c, S2.0, S2.€]= split(oprt) s2

Then construct the simplified/folded expression as siown below for sl.e and
s2.e being non-nil expressons.

HB/EWSHOP/FOLDING/5

Fold BinExpr
@ sl.o
/ \52 0 / \
1'0\ /_\ sl.c ®s2.c /E \
s2.c sle

sl.c sl.e s2.e s2.e

(sl.c sl.o sl.e) @ (s2.c s2.0 s2.e) [I
(sl.c @ s2.c) slo (sl.e E s2.e)

where slo| @ |s20| E

sl.o,s2.0, 9, E [0{Plus, Minus} [n n n T

sl.o,s2.0, @, E O {Mult, Div}
+ + - -
+ - + -
+ - - +
- + + -
- + - +
- - + +

Application of the rules 0+e=e and 1[e=e is not shown.

