LEC&HB/EXPR-EVAL/1

Union/ Heterogeneous Data Structures

union IntDouble
{ int ival; /I public members
double dval,

5

IntDouble x;
x.ival= 9; x.ival= x.ival + 5; ... /I x as int variable

x.dval= 34.56; // overwrite int value
x.dval = x.dval + 3.4 // x as a double

x.val=5;x.dval+ 2.7 .. // disaster

* A union ohed isastruct obed that stores al it s data-members at the same
location (off set zero relative to the beginning d the objed).

* A union ohed hadsonly one type of value & atime.

* A union ohed is given enoughspaceto hdd the largest of its data
members.

» The member notations x.ival and x.dval are used nad to get diff erent off sets,
but to get different interpretations of data stored at the same location.

* It isyour resporsibility to accessaunion ohed corredly to retrieve the
most recently assgned value.

LEC&HB/EXPR-EVAL/2

Symbolic expressions

Terminal symbols are:
+, -, *,/,sin, cos, exp, log, (,), variables, constants

Consider writing a symbolic expression as a tree:

+

a+b*sin(c)

—>

Every terminal symbol is part of the expression, the operators have
either one or two arguments.

Symbolic expressions

One way of making inheritance:

LEC&HB/EXPR-EVAL/3

Expression

Constant || Variables Binary Unary
operator operator
\
Add Sin Log
Sub Mul Div Cos Exp

Common for all expressions is that they can be evaluated, shown,
differentiated and so fourth, such methods should be declared in an
abstract base class, “Expression” in the above.

LEC&HB/EXPR-EVAL/4

Unparsing

—> alb-cl/d

—> (a-b)/(c-d)

—> a-(b-c)

Compare change in operator priority and dacement of parenthesis.

