Informatics and Mathematicd Modelling ~ C++ for those who know Java,

Computer Science and Techndogy 02198
Lasse Engbo Christiansen & Hans Bruun January 2002
Jan 2002

Contents

1. C++for Those who Know Java, Projed Problem January 2002
2. XWORKSHOP2002 s Command Language
2.1 Thelexical Rulesof the Command Language

2.2 The Syntax of the Command L anguage

2.3 Expresdons
2.3.1 Symbdlic Expressons
232 Well-formed Expressons, From Textual Expressons to Symbolic Expressons
233 Expresson and Meta Expresson

2.4 Variable Dedaration

2.5 Expresdon Definition

2.6 Showing an Expresson

2.7 Expresdon Evaluation

2.8 Assgnment

2.9 Meta-expresson
291 Differentiation
292 Substitution
293 Converting to Constant Expressons
294 Simplification of Expressons

2.10 quitand help
Example of Use

Detedion af Errors

Minimum requirements and proposals for extensions

© (00 |0 [0 o [tlnju;juofor o1 | | [| [wWiwwihd NN IN I

L e

Report Requirements

1. C++ for Those who Know Java, Project Problem January 2002

In C++ for those who know Java, you will I ean C++ and you will have to make abig C++ program.
This document describes the problem, which you are suppaed to solve. The size of the projed makes
it necessary for you to work in a group d two o threestudents. It will also be an advantage to have
some programming experience How much o the projed you are suppased to implement in groups of
2 or 3ismentioned in sedion 5. The projed and various programming techniques necessary to solve
the problem will be explained during the ledures.

In the projea problem described here, a system for expresson manipulation has to be implemented in
C++. In the sequel, the system will be cdled XWORKSHOP2002 (eXpressonWORKSHOP2002. In
the system one can interadively — using commands — define aithmetic expressons, print, evaluate
and transform expressons in a variety of ways, e.g. make symbdlic differentiation. The systems
command language is described in sedion 2 and sedion 3 shows a big example on wing the
XWORKSHOP2002 system. The description d the cmmand language in sedion 2 is rather concise so
it may be agoodideato read sedion 3 first or in paral el with the reading of sedion 2.

C++ for those who know java, 02198

2. XWORKSHOP2002's Command L angu age
2.1 TheLexical Rules of the Command Language

Theterminal symbads of the mmmand language ae shown below:

“nunt ,“l et” ,“show’ ,“eval " ,“di ff” b “fol d”, “subst”, 6 “const”, “quit”, “hel p”,
“(" 1“) " 1“=" 1“:=" 1“+" 1“_ " 1“D1 1“/”) “:"'

Identifiers and numeric constants are dso considered terminal symbals. In the sequel they are denated
by | d andConst respedively and are defined below:

Id :asequenceof letters and dgits, beginning with aletter.
Const :asequenceof digits (the integer part), posshbly the charader “.” and a (possbly empty)
sequence of digits (the dedmal part), which all together represent adedmal fradion.

The termina symbads from “nuni to “hel p” are cdled keywords. Besides terminal symbols a
command may contain space taraders. Spaces are only alowed between terminal symbals. Spaces
are necessary to separate keywords and identifiers and are necessary to separate an identifier from a
subsequent numeric constant.

A command must be on ore ling, i.e. aline shift charader is not allowed in a coommand, bu must
follow the terminal symbad in the mmmand. The terminating line shift charader will i nitiate the
exeadtion o the ommmand.

2.2 The Syntax o the Command L anguage

The syntax for the XWORKSHOP2002 command language is srown below using an EBNF-grammar. In
this notation { X} means that X may be repeaed zero are more times. The semantic of the various
language aonstructsin the command language is explained in the subsequent subsedions.

Command = Decl Var | DefExpr | ShowkExpr | Eval Expr | Assign |
“quit”| “hel p”
Decl Var = “nunfld
Def Expr = “let”1d “=" MEO —
ShowExpr = “show’ MEO Operatorprioritet
Eval Expr = *“eval " MEO wqn wm 1
Assi gn = 1d *“:=" MEO
“aLer 2
VEO = EO Met aExpr
E0 = El {Prrloprt E1} UnGp,() 3
Pmoprt = “+" | “-”
El = E2 {Mloprt E2}
Miloprt = “*” | “/”
E2 = UnOp “(” MEO “)" | “(” MEO “)” | Id | Const
UnOp = “sin” | “cos” | “exp” | “log”
Met aExpr = *diff (" Id “)” MEO | “subst”“(” Id “:"MEQO")" MEO |

“fol d” MEO | “const” MEO
The operators have arelative priority as siown in the table to the right. This priority also appeas
impli citly from the grammar above. All operators are left asociative.
2.3 Expressons

The sequences of terminal symbals that may be derived from EO, are cdled expressons. Expresdons
are used to spedfy symbadlic expressons. The various commands in the ammmand language can work
with symbadlic expressonsin dfferent ways. evaluate them, print them, diff erentiate them etc.

NOON TOIVAAOSX

C++ for those who know java, 02198

2.3.1 Symbolic Expressons

Usualy one regards an expresson as written text
e.g. atb+c{d+etf). In order to understand this
expresson corredly one has to know that U has + *
greder priority than + and that + and O are both \

left assciative. This may be spedfied explicitly

by pladng extra parentheses: (a+b)+(cl{(d+€)+f)). | g b C +
Symbdlic expressons are expressons regarded as
a tree structure with operators in the nodes and
operands in the leds. The tree structure shows
diredly the operands of an operator as sub-trees,
thereby avoiding the need for parentheses and
concepts like priority and aswciativity. The tree d e
structure shown to the right may be regarded as

the symbdlic expresson for the textual expresson shown previoudly.

2.3.2 Weéll-formed Expressons, From Textual Expressonsto Symbolic Expressons

Expresgons are apart of the mgjority of commands. How expresson are written as text in a ommand
is defined in the syntax for the command language, seesedion 2.2 A sequence of terminal symbalsis
a syntadicdly corred expressonif it is derivable from EQ, i.e. it is the syntax rules for EO, and the
various forms of sub-expressons E1, and E2, which define the form of expressons. The textual
expresson, as it is written in the cmmand, represents a symbalic expresson, as defined in sedion
2.3.1 Below is arule for ead form, which a textual expresson may have. In the rule for a textual
expresson cerived from E we use the notation S(E)to denote the wrrespondng symbadlic
expresson.

Expresgons must be syntadicdly corred, but must furthermore satisfy some requirementsin order to
be well-formed. In sedion 2.7 abou expresson evaluation it is gedfied that the different expresson
operators exped operand values of some spedfic type, e.g. the operator + must have numeric
operands.

2.3.3 Expresson and Meta Expresson

Commands contains ordinary expressons (derived from EQ) as explained in sedion 2.3 and so-cdl ed
meta-expresson derived from Met aExpr . Meta-expresson will be explained in sedion 2.9. Both
ordinary expressons and meta-expressons denate asymbalic expresson, bu meta-expressons differ
from ordinary expressons by obtaining the denated symbadlic expresson by transformation o an
other symbadlic expresson (e.g. symbdlic differentiation). Ordinary expressons (derived from EO —
E2) have adired equivalent symbadlic expresson whereas meta-expressons do nd have an equivalent
symbalic expresson.

In some of the XWORKSHOP2002 commands working on a symbadlic expresson, this expresson may
be spedfied by either an ordinary expresson a a meta-expresson. This is indicated with the symbadl
MEQ in the syntax for the cdmmand language (sed. 2.2). The symbal MEQO is defined by therule

MEQO = EO | MetaExpr

For a MEO-expresson d the form EO hdds S(MEQ)= S(EO) and for a EO-expresson o the forme
Met aExpr hdds S(MEO)= S(Met aExpr).

00N T0TURAOSX

C++ for those who know java, 02198

2.4 Variable Dedaration

When running the expresson system XWORKSHOP2002, the system allocaes gorage of places. A
placemay contain a numeric' variable. By use of different commands, the user may store values in
and retrieve values from these places.

Decl Var = “nunt | d

The exeaution d a Decl Var command d the form “nunt 1 d resultsin | d being dedared as a
numeric variable. This has two consequences:

* A new place- correspondng to Id —is all ocated in the storage. This place ontains a numeric
value andit isinitialised to the value 0.

» Theidentifier 1 d is defined to denate the symbadlic expresson NVar(l d). In expressonsin
all the subsequent commands, | d will dencte this symbalic expresson as described in sedion
2.3.2(E2-expresson).

No subsequent command may re-dedare or re-define the identifier | d.

2.5 Expresson Definition

e DefExpr = “let” Id “=" MEO

A Def Expr command hestheform“l et” 1 d “=" MEO . The exeaution d the cmmand resultsin
I d being defined to denote the symbdic expresson S(MEQ) . The definition is valid for the
remaining part of the sesson a until the identifier 1d in a subsequent command is dedared as a
variable or is re-defined. The eeaution d the cmmand furthermore results in the text

Id =unpars(S(MEQ)) being written onthe next line. Here unpar s(S(MEQ)) is a textual
representation d the symbdlic expresson S(MEQ) . Seesedion 2.6.

You shoud naicethat after this command, | d isthe name of a symbdlic expresson,sol d isnot a
variable. Furthermore, nae that both when | d is dedared as a variable (in a Decl Var command)
and when | d is defined to be the name of a symbdlic expresgon (in a Def Expr command) | d
denotes a symbadlic expresson. When | d is dedared as a variable in a DedVar-command the
command exeaution moreover resultsin the dlocaion d avariable having this name.

2.6 Showing an Expresson

* ShowkExpr = “show’ MEO

A ShowExpr command hes the form “show’ MEO. When exeauted the command prints on the next
line the text unpar s(S(MEO)) . Here unpars(S(MEQ)) is a textual representation d the
symbadic expresson S(MEQ) . This textual representation is charaderised by having the minimal
number of parentheses for showing the structure of S(MEO) using the given priority and asociativity
of the operatorsin the expression.

2.7 Expresson Evaluation

* Eval Expr = “eval” MEO

A Eval Expr command hes the form “eval " MEO. When exeauting the cmmand the value of the
symbadlic expresson S(MEQ) iscdculated. The cdculated value is written onthe next line.

The evaluation d a symbdlic expresson — with no errors — results in a numeric value. If the
evaluation d an expresgon results in an error, an error message is written, and the result of the
erroneous sub-expresson beaomes 0.

! In these notes the word numeric is used to mean an integer or ared value.
4

NOON TOIVAAOSX

C++ for those who know java, 02198

2.8 Assgnment
® Assign =1d “:=" MEO

An Assi gn command has the form I d “: =" MEO. For the cmmmand to exeaute wrredly the
identifier | d must have been dedared as a variable in a previous variable dedaration; otherwise the
system writes an error-message and the asdgn command is gopped. The command evaluates the
symbalic expresson S(MEO) which resultsin avalueev. Thevalue ev is gored in the placefor | d
in the storage.

2.9 Meta-expresson

In this sdion, the various forms of meta-expresgons will be explained. A meta-expresson cenotes a
symbalic expresson just as an ordinary expresson. But meta-expressons differ from ordinary
expresson by obtaining the denated symbdlic expresson by transformation d an aher symbadlic
expresson. The possble transformations are symbali ¢ diff erentiation, simplification and substitution.

2.9.1 Differentiation

e MetaExpr = “diff” “(” Id “)” MEO

A Met akExpr of theform“di ff”“(” Id “)” MEO denatesthe symbalic expresson, oliained by
differentiating the symbalic expresson S(MEQ) with resped to the variable denoted by 1 d. The
identifier | d must be dedared as a numeric variable in a previous command.

2.9.2 Substitution

* MetaExpr = “subst” “(” Id “:"MEO)" MEO

For a Met aExpr of the form “subst” “(”1d “:”MEO; “)” MEO, itisrequiredthat | d has
been dedared as a variable. The Meta-expresson denotes a symbadic expresson derived from
S(MEO,) inthefollowing way:

All sub-expressonsin S(MEO,) of theform Nvar(l d) arereplaceal by S(MEQ,) .
2.9.3 Converting to Constant Expressons

e MetaExpr = “const” MEO

A Met aExpr of theform “const” MEO denotesthe symbdic expresson oliained from S(MEQO)
in the following way. Let v be the value obtained by evaluating the symbadlic expresson S(MEO) ,
then the new symbalic expressonis Nconst(v);

2.9.4 Simplification of Expressons

e MetakExpr = “fold” MEO

A Met aExpr of the form “f ol d” MEO denctes the symbadlic expresson, which is obtained by
simplifying the symbadlic expresson S(MEQ) as much as possble by use of a set of rules partialy
shown in the sequel.

Rules for the ommutative and asociative law for + and [

Add(el, e2) = Add(e2, el)
Mul(el, e2) = Mul(e2, el)
Add(el, Add(e2, e3)) = Add(Add(el,e2),e3)
Mul(el, Mul(e2, e3)) = Mul(Mul(el,e2),e3)

Rules abou the neutral elements 1 and Q

Add(Nconst(0), el) = el
Mul(Nconst(1), el) =el
Div(el, Nconst(1)) =el
Sub(el,Nconst(0)) =el

NOON TOIVAAOSX

C++ for those who know java, 02198

Rulesfor 0 in conredionwith Jand/ :

Mul(Nconst(0), el) = Nconst(0)
Div(Nconst(0), e1) = Nconst(0)

Rules abou signs:

Sub(el, Add(e2, e3)) = Sub(Sub(el,e2),e3)

Evaluation o constant expressons:

Add(Nconst(rl), Nconst(r2)) = Nconst(r1+r2)
Sub(Nconst(rl), Nconst(r2)) = Nconst(rl-r2)

Mul(Nconst(rl), Nconst(r2))
Div(Nconst(r1), Nconst(r2))

Exp(Nconst(r))= Nconst(e")

= Nconst(r1[t2)
= Nconst(r1/r2)

Log(Nconst(r)) = Nconst(log(r))
Sin(Nconst(r)) = Nconst(sin(r))
Cos(Nconst(r)) = Nconst(cos(r))

These ae some rules that can be used simplifying expressons.

2.10 quit and help

The quit-command stops XWORKSHOP2002. The help-command prints smple instructions on hav to

use XWORKSHOP2002.

3. Example of Use

XWORKSHOP 2002

>num X
>num y

>eval x
0

>bool s

>eval s
fal se

>x:= 5.3
>X:= X+ 2

>eval X

7.3

>l et a= x+y+2
a= Xx+y+2

>l et b= al{3.5+a)
b= (x+y+2) [0 3. 5+x+y+2)

>show alb

Message from XWORKSHOP2002, > is the system prompt.
XWORKSHOP2002 is now waiti ng for a ammand from the user.

X is declared as anumeric variable.
y isdeclared as anumeric variable.

Evaluate the expresson, which is just the variable x. The
content of the variable has automaticdly been initialised to the
value 0.

sisdedared asalogic variable.

Evaluate s. Because s is dedared as a logic variable it is
initi ali sed to false.

Thevaue5.3is dored in the variable x.

Thevalue x+2 is gored in the variable x,

S0 X how containsthevalue 7.3

Here a is defined to denote the symbdic expresson

correspondng to x+y+2 . l.e. aisnot avariable & x andy, bu
isjust the name of a symbalic expresson.

Here b is defined to denate anather symbalic expresson, which
is constructed from the other symbadlic expresson denoted by a
Note that the system on line dter the ommand grints a textual
representation d the symbalic expresson which b denates. This
textual representation hes just the necessary parentheses.

The show-command prints a textual representation o

(X+y+2) * (x+y+2) * (3. 5+x+y+2) the symbalic expresson, which alb denctes. Note the

added parentheses.

6

NOON TOIVAAOSX

C++ for those who know java, 02198

>l et c=x-y Here cisdefined.

c=X-y

>show 2-c When printing the textual representation o a symbalic
2-(x-y) expresson the necessary parentheses are alded,
>Sh0\£v c-2 but only the necessary parentheses.

X-y-

>eval a Evaluation d the symbdic expresson which a
9.3 denotes. The variabley is part of this expresson,
>yi= 2.7 so if we change the value of the variableyy,

>§val a the evaluation d a dso yields a new result.

1

>| et sincosx= sin(x)+cos(x) In expressons the functions $n, cos, exp and log may

si ncosx= si n(x) +cos(x)

be used.

>l et escx= exp(Xx)*sincosx
escx=exp(x)*(sin(x)+cos(x))

>x:= 0

>eval escx
1
>x: =1

>eval escx
3. 75605
num z

>show a
X+y+2

>l et dax= diff(x)a
dax= 1+0+0

>l et fdax= fold dax
fdax= 1

>show b
b=(x+y+2) *(3. 5+x+y+2)
>l et dbx= diff(x)b

dbx=(x+y+2) * (0+1+0+0) +(3. 5+x+y+2) * (1+0+0)

>l et fdbx= fold dbx
fdbx= 7. 5+x+y+x+y

>l et h= sin(2Cexp(x))
h= sin(2Cexp(x))

>l et dhx= diff(x) 3Ch

We now try the more interesting part of XWORKSHOP2002,
namely the meta-expressions, i.e. expressons, which yield a new
symbadlic expresson olained by transforming a given symbadlic
expresson.

We start by computing the symbalic expresson which is the
differential coefficient of a with resped to x. Diff only knows
abou differentiation, so the result does not look very
professonal.

Fortunately, we have the fold-meta-expresson, which knows
something abou reducing expressons and evaluation of constant
expressons.

Using fold here might be agoodidea

Gred, bu note that fold does not know that x+x looks
nicer if written as 2*x.

Let’stry amore difficult expresson.

dhx= 3*cos(2*exp(x))*(2*exp(x)*1+exp(x)*0)+si n(2*exp(x))*0

>l et fdhx= fold dhx

f dhx= 6[tos(2lexp(x)) Lexp(x)
>l et fdhx1l= fold diff(x) 3Ch Note, it is not necessry to make the transformations
f dhx1= 6[tos(2Cexp(x)) exp(x) one by one; you can make them all in ore step.

>num z

Now, it only remains to try substitution:

Now we have threenumericd constants: x, y and z.

NOON TOIVAAOSX

C++ for those who know java, 02198

>l et a= sin(x+y+z)

a= sin(x+y+z)

>l et dx= diff(x) |og(x+1)ala A complicated expresson (depending on bah x,y and
z) is here diff erentiated with resped to x.

dx=
| Eg(x+1)*si n(x+y+z) *cos(x+y+z) *(1+0+0) +si n(x+y+z) * (1 og(x+1) *cos(x+y+z) * (1+0+0) +si n(x+y+z) *1/ (x+1) *(1+0))
>l et fdx= fold dx

f dx=l og(1+x) *si n(x+y+z) *cos(x+y+z) +si n(x+y+z) * (| og(1+x) *cos(x+y+z) +si n(x+y+z) / (1+x))

>x:=0 We would naw like to study the result as a function o
only y and z for fixed x=0:

>show f dx
I og(1+x) *si n(x+y+z) *cos(x+y+z) +si n(x+y+z) * (| og(1+x) *cos(x+y+z) +si n(x+y+z)/ (1+x))

But assgning 0 to x (x:= 0) does not change the symbdic
expressonat al, bu of courseit will evaluate to a different value.

>l et fdx0= subst(x:0) fdx What shoud be dorg, is to substitute the variable x
with the numerica constant 0.

f dx0=Il og(1+0) *si n(0+y+z) *cos(0+y+z) +si n(0+y+z) * (|1 og(1+0) *cos(0+y+z) +si n(O+y+z)/ (1+0))
>l et ffdx0= fold fdxO
ffdx0=sin(y+z)*sin(y+z) Now it is manageale.

Andwe ca aso doit all in ore big step:

>l et ffdx0= fold subst(x:0) fold diff(x) |og(x+1)[ala

ffdx0=si n(y+z)*sin(y+z)

>qui t Thiswas asmall presentation! Try yourself!
goodbye

4. Detection af Errors

It is important that XWORKSHOP2002 reads snsible to errors and makes understandable eror-
messages, here ae some examples:

Expr essi on Shop 2002

>num X X isdedared as anumeric variable.
>num y y isdedared as anumeric variable.
>num X Once a identifier is dedared as a variable its

x is already declared as a variable meaning canna be changed.

>let x =2
X is declared as a variable

>let a= 2

a= 2

>l et a= a+5 Notethat it islegal to change adefined identifier.
a= 2+5

5. Minimum requirements and propo sals for extensions

A group shoud — independent of its gze — be ale to implement al the commands in the
XWORKSHOP2002 command-language, described in sedion 2.2 , including all normal expressons
(derived from EO — E2) and the meta-expresgon“di ff” “(” 1d “)” MEO for differentiation,the
meta-expressons “subst” “(” 1d “:"MEO ") for substitution, “const” MEO for converting to
constants, and asimple “f ol d”, which takes care of some of the simpil fications mentioned above. A
group with three members houd also be ale to implement a more enhanced version d the fold
meta-expresson, as in colleding constants, and a power function shoud also be included. Overall,
good error-detedion and good error-messages courts.

8

NOON TOIVAAOSX

C++ for those who know java, 02198

After this, try to extent the expressons of the command-language such that exporentiation becomes
possble. You cedde — by yourself — the detailed syntax (including priority and asociativity).
Furthermore, try to extent the meta-expressons of the mmmandlanguage with aher posdble
transformations of symbadlic expressons. Among the possbiliti es we mention aher simplificaions
from the more mmmonpace & x+x=2x to simplificaions, which require knowledge @ou formulae
for cos, sin, exp andlog. Ancther posshility isintegration (indefinite integrals). Thisisin general not
passhble, so the system must be &le to recognise sub-expresson, where spedfic integration methods
may be goplied (difficult). A source for inspiration could be well known symbalic computer algebra
padkageslike eg. Maple and your old textbodks about mathematicd analysis.

6. Report Requirements

The report shoud contain sedions as mentioned below:

* Problem Analyses and Description of Problem Solution. A short analysis of the problem and a
description d the problem adually solved. Furthermore, a statement of possble ambiguities found
in the problem formulation and a description d dedsions made to repair these ambiguities.

The description d the problem solutionincludes a description d how you have implemented the
XWORKSHOP2002-systemet. This consists of

» Themain classs, their methods/functions and hav the dasss interad.

» The dgorithms and data-structures, which have been used.

» Source code: The source @de with appropriate comments. The code must be avail able on A4-
paper.

» Testing/debugging: Show the main examples used in the test and explain the extent to which
these examples have tested al the various parts of the program.

» Users Guide: Shoud orly contain changes compared to the given command-language a described
in sedion 2.

Note: In this course youwill be evaluated mainly from the program you have developed and nd so
much from the quality of the report. But, it is essential, that the report documents what has been made
and dacuments that the constructed system adually works.
Note: A diskette containing the mnstructed program and source @de shoud be atached to the
delivered report. January 2002

Lass Engbo Christiansen.

NOON TOIVAAOSX

