
Informatics and Mathematical Modelli ng
Computer Science and Technology
Lasse Engbo Christiansen & Hans Bruun
Jan 2002

C++ for those who know Java,
02198

January 2002

1

Contents

1. C++ for Those who Know Java, Project Problem January 2002 ______________1 � �
 � � � � � � � � 	 �

 �

's Command Language_________________________________ 2

2.1 The Lexical Rules of the Command Language _______________________________2

2.2 The Syntax of the Command Language_____________________________________ 2

2.3 Expressions __2
2.3.1 Symbolic Expressions __3
2.3.2 Well -formed Expressions, From Textual Expressions to Symbolic Expressions____________3
2.3.3 Expression and Meta Expression__3

2.4 Var iable Declaration __4

2.5 Expression Definition __4

2.6 Showing an Expression___4

2.7 Expression Evaluation ___4

2.8 Assignment __5

2.9 Meta-expression __5
2.9.1 Differentiation __5
2.9.2 Substitution __5
2.9.3 Converting to Constant Expressions ___5
2.9.4 Simpli fication of Expressions __5

2.10 quit and help ___6

3. Example of Use ___6

4. Detection af Errors __8

5. Minimum requirements and proposals for extensions_______________________8

6. Report Requirements___9

1. C++ for Those who Know Java, Project Problem January 2002

In C++ for those who know Java, you will l earn C++ and you will have to make a big C++ program.
This document describes the problem, which you are supposed to solve. The size of the project makes
it necessary for you to work in a group of two or three students. It will also be an advantage to have
some programming experience. How much of the project you are supposed to implement in groups of
2 or 3 is mentioned in section 5. The project and various programming techniques necessary to solve
the problem will be explained during the lectures.

In the project problem described here, a system for expression manipulation has to be implemented in
C++. In the sequel, the system will be called � � � � � � � � � � � (eXpressionWORKSHOP2002). In
the system one can interactively – using commands – define arithmetic expressions, print, evaluate
and transform expressions in a variety of ways, e.g. make symbolic differentiation. The systems
command language is described in section 2 and section 3 shows a big example on using the
� � � � � � � � � � � system. The description of the command language in section 2 is rather concise so
it may be a good idea to read section 3 first or in parallel with the reading of section 2.

C++ for those who know java, 02198

2

2. � � � � � � � � � � � � � 's Command L angu age

2.1 The Lexical Rules of the Command Language

The terminal symbols of the command language are shown below:

“num” , “let” , “show” , “eval” , “diff” , “fold” , “subst” , “const” , “quit” , “help” ,
“(” , “)” , “=” , “ :=” , “+” , “-” , “∗∗” , “ /” , “ :” .

Identifiers and numeric constants are also considered terminal symbols. In the sequel they are denoted
by Id and Const respectively and are defined below:

Id : a sequence of letters and digits, beginning with a letter.
Const : a sequence of digits (the integer part), possibly the character “ .” and a (possibly empty)
sequence of digits (the decimal part), which all together represent a decimal fraction.

The terminal symbols from “num” to “help” are called keywords. Besides terminal symbols a
command may contain space characters. Spaces are only allowed between terminal symbols. Spaces
are necessary to separate keywords and identifiers and are necessary to separate an identifier from a
subsequent numeric constant.

A command must be on one line, i.e. a line shift character is not allowed in a command, but must
follow the terminal symbol in the command. The terminating line shift character will i nitiate the
execution of the command.

2.2 The Syntax of the Command Language

The syntax for the � � � � � � � � � � � command language is shown below using an EBNF-grammar. In
this notation { X} means that X may be repeated zero ore more times. The semantic of the various
language constructs in the command language is explained in the subsequent subsections.

Command = DeclVar | DefExpr | ShowExpr | EvalExpr | Assign |
 “quit” | “help”
DeclVar = “num” Id
DefExpr = “let” Id “=” ME0
ShowExpr = “show” ME0
EvalExpr = “eval” ME0
Assign = Id “:=” ME0

ME0 = E0 | MetaExpr
E0 = E1 { Pmoprt E1}
Pmoprt = “+” | “-”
E1 = E2 { Mdoprt E2}
Mdoprt = “*” | “/”
E2 = UnOp “(” ME0 “)” | “(” ME0 “)” | Id | Const
UnOp = “sin” | “cos” | “exp” | “log”

MetaExpr = “diff” “(” Id “)” ME0 | “subst” “(” Id “:”ME0 “)” ME0 |
 “fold” ME0 | “const” ME0

The operators have a relative priority as shown in the table to the right. This priority also appears
implicitl y from the grammar above. All operators are left associative.

2.3 Expressions

The sequences of terminal symbols that may be derived from E0, are called expressions. Expressions
are used to specify symbolic expressions. The various commands in the command language can work
with symbolic expressions in different ways: evaluate them, print them, differentiate them etc.

Operatorprioritet

“ +” , “ -” 1

“ ∗∗” , “ /” 2

UnOp,() 3

C++ for those who know java, 02198

3

+

+ *

+

+

a b c

f

d e

2.3.1 Symbolic Expressions

Usually one regards an expression as written text
e.g. a+b+c∗(d+e+f). In order to understand this
expression correctly one has to know that ∗ has
greater priority than + and that + and ∗ are both
left associative. This may be specified explicitl y
by placing extra parentheses: (a+b)+(c∗((d+e)+f)).
Symbolic expressions are expressions regarded as
a tree structure with operators in the nodes and
operands in the leafs. The tree structure shows
directly the operands of an operator as sub-trees,
thereby avoiding the need for parentheses and
concepts li ke priority and associativity. The tree
structure shown to the right may be regarded as
the symbolic expression for the textual expression shown previously.

2.3.2 Well -formed Expressions, From Textual Expressions to Symbolic Expressions

Expressions are a part of the majority of commands. How expression are written as text in a command
is defined in the syntax for the command language, see section 2.2. A sequence of terminal symbols is
a syntactically correct expression if it is derivable from E0, i.e. it is the syntax rules for E0, and the
various forms of sub-expressions E1, and E2, which define the form of expressions. The textual
expression, as it is written in the command, represents a symbolic expression, as defined in section
2.3.1. Below is a rule for each form, which a textual expression may have. In the rule for a textual
expression derived from E we use the notation S(E)to denote the corresponding symbolic
expression.

Expressions must be syntactically correct, but must furthermore satisfy some requirements in order to
be well -formed. In section 2.7 about expression evaluation it is specified that the different expression
operators expect operand values of some specific type, e.g. the operator + must have numeric
operands.

2.3.3 Expression and Meta Expression

Commands contains ordinary expressions (derived from E0) as explained in section 2.3 and so-called
meta-expression derived from MetaExpr. Meta-expression will be explained in section 2.9. Both
ordinary expressions and meta-expressions denote a symbolic expression, but meta-expressions differ
from ordinary expressions by obtaining the denoted symbolic expression by transformation of an
other symbolic expression (e.g. symbolic differentiation). Ordinary expressions (derived from E0 −
E2) have a direct equivalent symbolic expression whereas meta-expressions do not have an equivalent
symbolic expression.

In some of the � � � � � � � � � � � commands working on a symbolic expression, this expression may
be specified by either an ordinary expression or a meta-expression. This is indicated with the symbol
ME0 in the syntax for the command language (sect. 2.2). The symbol ME0 is defined by the rule

ME0 = E0 | MetaExpr

For a ME0-expression of the form E0 holds S(ME0)= S(E0) and for a E0-expression of the forme
MetaExpr holds S(ME0)= S(MetaExpr).

C++ for those who know java, 02198

4

2.4 Var iable Declaration

When running the expression system � � � � � � � � � � � , the system allocates storage of places. A
place may contain a numeric1 variable. By use of different commands, the user may store values in
and retrieve values from these places.

DeclVar = “num” Id

The execution of a DeclVar command of the form “num” Id results in Id being declared as a
numeric variable. This has two consequences:

• A new place – corresponding to Id – is allocated in the storage. This place contains a numeric
value and it is initiali sed to the value 0.

• The identifier Id is defined to denote the symbolic expression NVar(Id). In expressions in
all the subsequent commands, Id will denote this symbolic expression as described in section
2.3.2 (E2-expression).

No subsequent command may re-declare or re-define the identifier Id.

2.5 Expression Definition

• DefExpr = “let” Id “=” ME0

A DefExpr command has the form “let” Id “=” ME0 . The execution of the command results in
Id being defined to denote the symbolic expression S(ME0). The definition is valid for the
remaining part of the session or until the identifier Id in a subsequent command is declared as a
variable or is re-defined. The execution of the command furthermore results in the text
 Id = unpars(S(ME0)) being written on the next line. Here unpars(S(ME0)) is a textual
representation of the symbolic expression S(ME0). See section 2.6.

You should notice that after this command, Id is the name of a symbolic expression, so Id is not a
variable. Furthermore, note that both when Id is declared as a variable (in a DeclVar command)
and when Id is defined to be the name of a symbolic expression (in a DefExpr command) Id
denotes a symbolic expression. When Id is declared as a variable in a DeclVar-command the
command execution moreover results in the allocation of a variable having this name.

2.6 Showing an Expression

• ShowExpr = “show” ME0

A ShowExpr command has the form “show” ME0. When executed the command prints on the next
line the text unpars(S(ME0)). Here unpars(S(ME0)) is a textual representation of the
symbolic expression S(ME0). This textual representation is characterised by having the minimal
number of parentheses for showing the structure of S(ME0)using the given priority and associativity
of the operators in the expression.

2.7 Expression Evaluation

• EvalExpr = “eval” ME0

A EvalExpr command has the form “eval” ME0. When executing the command the value of the
symbolic expression S(ME0) is calculated. The calculated value is written on the next line.

The evaluation of a symbolic expression – with no errors – results in a numeric value. If the
evaluation of an expression results in an error, an error message is written, and the result of the
erroneous sub-expression becomes 0.

1 In these notes the word numeric is used to mean an integer or a real value.

C++ for those who know java, 02198

5

2.8 Assignment

• Assign = Id “:=” ME0

An Assign command has the form Id “:=” ME0. For the command to execute correctly the
identifier Id must have been declared as a variable in a previous variable declaration; otherwise the
system writes an error-message and the assign command is stopped. The command evaluates the
symbolic expression S(ME0) which results in a value ev. The value ev is stored in the place for Id
in the storage.

2.9 Meta-expression
In this section, the various forms of meta-expressions will be explained. A meta-expression denotes a
symbolic expression just as an ordinary expression. But meta-expressions differ from ordinary
expression by obtaining the denoted symbolic expression by transformation of an other symbolic
expression. The possible transformations are symbolic differentiation, simpli fication and substitution.

2.9.1 Differentiation

• MetaExpr = “diff” “(” Id “)” ME0
A MetaExpr of the form “diff” “(” Id “)” ME0 denotes the symbolic expression, obtained by
differentiating the symbolic expression S(ME0) with respect to the variable denoted by Id. The
identifier Id must be declared as a numeric variable in a previous command.
2.9.2 Substitution

• MetaExpr = “subst” “(” Id “:”ME0 “)” ME0

For a MetaExpr of the form “subst” “(”Id “:”ME01 “)” ME02 it is required that Id has
been declared as a variable. The Meta-expression denotes a symbolic expression derived from
S(ME02) in the following way:

All sub-expressions in S(ME02) of the form Nvar(Id) are replaced by S(ME01).

2.9.3 Converting to Constant Expressions

• MetaExpr = “const” ME0

A MetaExpr of the form “const” ME0 denotes the symbolic expression obtained from S(ME0)
in the following way. Let v be the value obtained by evaluating the symbolic expression S(ME0),
then the new symbolic expression is Nconst(v);

2.9.4 Simpli fication of Expressions

• MetaExpr = “fold” ME0

A MetaExpr of the form “fold” ME0 denotes the symbolic expression, which is obtained by
simpli fying the symbolic expression S(ME0) as much as possible by use of a set of rules partiall y
shown in the sequel.

Rules for the commutative and associative law for + and ∗:

Add(e1, e2) = Add(e2, e1)
Mul(e1, e2) = Mul(e2, e1)
Add(e1, Add(e2, e3)) = Add(Add(e1,e2),e3)
Mul(e1, Mul(e2, e3)) = Mul(Mul(e1,e2),e3)

Rules about the neutral elements 1 and 0:

Add(Nconst(0), e1) = e1
Mul(Nconst(1), e1) = e1
Div(e1, Nconst(1)) = e1
Sub(e1,Nconst(0)) = e1

C++ for those who know java, 02198

6

Rules for 0 in connection with ∗ and / :

Mul(Nconst(0), e1) = Nconst(0)
Div(Nconst(0), e1) = Nconst(0)

Rules about signs:

Sub(e1, Add(e2, e3)) = Sub(Sub(e1,e2),e3)

Evaluation of constant expressions:

Add(Nconst(r1), Nconst(r2)) = Nconst(r1+r2)
Sub(Nconst(r1), Nconst(r2)) = Nconst(r1-r2)
Mul(Nconst(r1), Nconst(r2)) = Nconst(r1∗r2)
Div(Nconst(r1), Nconst(r2)) = Nconst(r1/r2)

Exp(Nconst(r)) = Nconst(er)
Log(Nconst(r)) = Nconst(log(r))
Sin(Nconst(r)) = Nconst(sin(r))
Cos(Nconst(r)) = Nconst(cos(r))

These are some rules that can be used simpli fying expressions.

2.10 quit and help
The quit-command stops � � � � � � � � � � � . The help-command prints simple instructions on how to
use � � � � � � � � � � � .

3. Example of Use

XWORKSHOP 2002 Message from � � � � � � � � � � � , > is the system prompt.

� � � � � � � � � � � is now waiting for a command from the user.

>num x x is declared as a numeric variable.

>num y y is declared as a numeric variable.

>eval x
0

Evaluate the expression, which is just the variable x. The
content of the variable has automatically been initiali sed to the
value 0.

>bool s s is declared as a logic variable.

>eval s
false

Evaluate s. Because s is declared as a logic variable it is
initiali sed to false.

>x:= 5.3 The value 5.3 is stored in the variable x.

>x:= x+ 2 The value x+2 is stored in the variable x,

>eval x
7.3

so x now contains the value 7.3

>let a= x+y+2
a= x+y+2

Here a is defined to denote the symbolic expression
corresponding to x+y+2 . I.e. a is not a variable as x and y, but
is just the name of a symbolic expression.

>let b= a∗(3.5+a)
b= (x+y+2)∗(3.5+x+y+2)

Here b is defined to denote another symbolic expression, which
is constructed from the other symbolic expression denoted by a.
Note that the system on line after the command prints a textual
representation of the symbolic expression which b denotes. This
textual representation has just the necessary parentheses.

>show a∗b
(x+y+2)*(x+y+2)*(3.5+x+y+2)

The show-command prints a textual representation of
the symbolic expression, which a∗b denotes. Note the
added parentheses.

C++ for those who know java, 02198

7

>let c=x-y
c=x-y

Here c is defined.

>show 2-c
2-(x-y)

When printing the textual representation of a symbolic
expression the necessary parentheses are added,

>show c-2
x-y-2

but only the necessary parentheses.

>eval a
9.3

Evaluation of the symbolic expression which a
denotes. The variable y is part of this expression,

>y:= 2.7 so if we change the value of the variable y,

>eval a
12

the evaluation of a also yields a new result.

>let sincosx= sin(x)+cos(x)
sincosx= sin(x)+cos(x)

In expressions the functions sin, cos, exp and log may
be used.

>let escx= exp(x)*sincosx
escx=exp(x)*(sin(x)+cos(x))

>x:= 0

>eval escx
1

>x:= 1

>eval escx
3.75605

num z

>show a
x+y+2

We now try the more interesting part of � � � � � � � � � � � ,
namely the meta-expressions, i.e. expressions, which yield a new
symbolic expression obtained by transforming a given symbolic
expression.

>let dax= diff(x)a
dax= 1+0+0

We start by computing the symbolic expression which is the
differential coefficient of a with respect to x. Diff only knows
about differentiation, so the result does not look very
professional.

>let fdax= fold dax
fdax= 1

Fortunately, we have the fold-meta-expression, which knows
something about reducing expressions and evaluation of constant
expressions.

>show b
b=(x+y+2)*(3.5+x+y+2)

>let dbx= diff(x)b
dbx=(x+y+2)*(0+1+0+0)+(3.5+x+y+2)*(1+0+0)

Using fold here might be a good idea.

>let fdbx= fold dbx
fdbx= 7.5+x+y+x+y

Great, but note that fold does not know that x+x looks
nicer if written as 2*x.

>let h= sin(2∗exp(x))
h= sin(2∗exp(x))

Let’s try a more diff icult expression.

>let dhx= diff(x) 3∗h
dhx= 3*cos(2*exp(x))*(2*exp(x)*1+exp(x)*0)+sin(2*exp(x))*0

>let fdhx= fold dhx
fdhx= 6∗cos(2∗exp(x))∗exp(x)

>let fdhx1= fold diff(x) 3∗h
fdhx1= 6∗cos(2∗exp(x))∗exp(x)

Note, it is not necessary to make the transformations
one by one; you can make them all i n one step.

 Now, it only remains to try substitution:

>num z Now we have three numerical constants: x, y and z.

C++ for those who know java, 02198

8

>let a= sin(x+y+z)
a= sin(x+y+z)

>let dx= diff(x) log(x+1)∗a∗a A complicated expression (depending on both x, y and
z) is here differentiated with respect to x.

dx=
log(x+1)*sin(x+y+z)*cos(x+y+z)*(1+0+0)+sin(x+y+z)*(log(x+1)*cos(x+y+z)*(1+0+0)+sin(x+y+z)*1/(x+1) *(1+0))

>let fdx= fold dx
fdx=log(1+x)*sin(x+y+z)*cos(x+y+z)+sin(x+y+z)*(log(1+x)*cos(x+y+z)+sin(x+y+z)/(1+x))

>x:= 0 We would now like to study the result as a function of
only y and z for fixed x=0:

>show fdx
log(1+x)*sin(x+y+z)*cos(x+y+z)+sin(x+y+z)*(log(1+x)*cos(x+y+z)+sin(x+y+z)/(1+x))

 But assigning 0 to x (x:= 0) does not change the symbolic
expression at all , but of course it will evaluate to a different value.

>let fdx0= subst(x:0) fdx

What should be done, is to substitute the variable x
with the numerical constant 0.

fdx0=log(1+0)*sin(0+y+z)*cos(0+y+z)+sin(0+y+z)*(log(1+0)*cos(0+y+z)+sin(0+y+z)/(1+0))

>let ffdx0= fold fdx0
ffdx0=sin(y+z)*sin(y+z)

Now it is manageable.

 And we can also do it all i n one big step:

>let ffdx0= fold subst(x:0) fold diff(x) log(x+1)∗a∗a
ffdx0=sin(y+z)*sin(y+z)

>quit
goodbye

This was a small presentation! Try yourself!

4. Detection af Errors

It is important that � � � � � � � � � � � reacts sensible to errors and makes understandable error-
messages, here are some examples:

Expression Shop 2002 .

>num x x is declared as a numeric variable.

>num y y is declared as a numeric variable.

>num x
x is already declared as a variable

Once an identifier is declared as a variable its
meaning cannot be changed.

>let x = 2
x is declared as a variable

>let a= 2
a= 2

>let a= a+5
a= 2+5

Note that it is legal to change a defined identifier.

5. Minimum requirements and p ropo sals for extensions

A group should – independent of its size − be able to implement all the commands in the
� � � � � � � � � � � command-language, described in section 2.2 , including all normal expressions
(derived from E0 – E2) and the meta-expression “diff” “(” Id “)” ME0 for differentiation, the
meta-expressions “subst” “(” Id “:”ME0 “)” for substitution, “const” ME0 for converting to
constants, and a simple “fold” , which takes care of some of the simpil fications mentioned above. A
group with three members should also be able to implement a more enhanced version of the fold
meta-expression, as in collecting constants, and a power function should also be included. Overall ,
good error-detection and good error-messages counts.

C++ for those who know java, 02198

9

After this, try to extent the expressions of the command-language such that exponentiation becomes
possible. You decide – by yourself – the detailed syntax (including priority and associativity).
Furthermore, try to extent the meta-expressions of the command-language with other possible
transformations of symbolic expressions. Among the possibiliti es we mention other simpli fications
from the more commonplace as x+x=2x to simpli fications, which require knowledge about formulae
for cos, sin, exp and log. Another possibilit y is integration (indefinite integrals). This is in general not
possible, so the system must be able to recognise sub-expression, where specific integration methods
may be applied (diff icult). A source for inspiration could be well known symbolic computer algebra
packages li ke e.g. Maple and your old textbooks about mathematical analysis.

6. Report Requirements

The report should contain sections as mentioned below:

• Problem Analyses and Description of Problem Solution. A short analysis of the problem and a
description of the problem actually solved. Furthermore, a statement of possible ambiguities found
in the problem formulation and a description of decisions made to repair these ambiguities.
The description of the problem solution includes a description of how you have implemented the
� � � � � � � � � � � -systemet. This consists of

• The main classes, their methods/functions and how the classes interact.
• The algorithms and data-structures, which have been used.

• Source code: The source code with appropriate comments. The code must be available on A4-
paper.

• Testing/debugging: Show the main examples used in the test and explain the extent to which
these examples have tested all the various parts of the program.

• Users Guide: Should only contain changes compared to the given command-language as described
in section 2.

Note: In this course you will be evaluated mainly from the program you have developed and not so
much from the quality of the report. But, it is essential, that the report documents what has been made
and documents that the constructed system actually works.
Note: A diskette containing the constructed program and source code should be attached to the
delivered report. January 2002

Lasse Engbo Christiansen.

