

2.7182818284

Software Engineering 2 Project presentation

Ekkart Kindler

DTU Informatics Department of Informatics and Mathematical Modeling

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)}{i!}$

Project in a nutshell

Simple interactive 3D animation of a system DTU

Ħ

- What are Petri nets?
- What do we need to add for animating behaviour in 3D?
- Some more detailed concepts!
- More detailed requirements!

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

Petri nets: Concepts

Marking: A distribution of tokens on the places (there may be more than one token on a place)

Petri nets: Firing rule

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

before (must be there and are consumed)

after (are produced)

Firing rule

before (must be there and are consumed)

after (are produced)

Other tokens might be there (do not change)

Different transitions might be able to fire; the choice is nondeterministic.

Example: Toy train

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

Toy train: Simple net

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

Models for components

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

DTU

Models for components

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

n1.track

Signal: Detailed model

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

Switch: Detailed model

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

- What are Petri nets?
- What do we need to add for animating behaviour in 3D?
- Some more detailed concepts!
- More detailed requirements!

- Geometric information
 - arrangement of tracks (geometry)
- Physical appearance
 - appearance of objects (3D model/shape)
 - appearance of tracks (mostly texture)
- Animations
 - "Behaviour" of a token while on a place

- What are Petri nets?
- What do we need to add for animating behaviour in 3D?
- Some more detailed concepts!
- More detailed requirements!

Animation information

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

DTU

Ħ

Screenshot

SE2: Project

More fancy version

DTU Informatics Department of Informatics and Mathematical Modelling Ekkart Kindler

Which shape?

- How do the following shapes look like?
 - train
 - sigGo
 - sigStop

Shapes corresponding to tokens: dynamic shapes

track

- Shapes corresponding to geometry objects: static shapes
- The appearance of each shape is defined in a separate models file
 - a reference to a VRML model for a dynamic shape (you are free to use other models)
 - a profile and a texture for a static shape

- Simple extension for equipping a Petri net model with a 3D-visualization
- Cheap way of showing a customer what a system modelled as a Petri net would really do – for validation purposes

Re-implementation of PNVis based on a new model-based Petri net tool (the ePNK) and with more modern development technologies (EMF)

- What are Petri nets?
- What do we need to add for animating behaviour in 3D?
- Some more detailed concepts!
- More detailed requirements! (will be continued)

- Extended Petri net type for the ePNK that covers the extensions that are needed for the animations
- Graphical editor for geometries (points and lines the "Petri net animations" refers to)
- Editor for defining the appearance of objects and tracks (referring to external 3D-models and textures)
- Simulator for the extended Petri net type that interacts with the 3D animation engine
- 3D animation engine that interacts with the Petri net simulation (and with the end user)
- GUI for starting and controlling 3D animations from a simple configuration file

- SE2 project page: http://www2.imm.dtu.dk/courses/02162/e13/project/
- Ekkart Kindler and Csaba Páles: 3D-Visualization of Petri Net Models. In: J. Cortadella and W. Reisig (eds.): ICATPN 2004, LNCS 3099, pp. 464–473, Springer 2004: http://www2.imm.dtu.dk/courses/02162/e13/project/ PDF/PNVis-PN04.pdf
- ePNK home page: http://www2.imm.dtu.dk/~eki/projects/ePNK/