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Abstract. We present a simple concept for the 3D-visualization of sys-
tems that are modelled as a Petri net. To this end, the Petri net is
equipped with some information on the physical objects corresponding
to the tokens on the places. Moreover, we discuss a prototype of a tool
implementing this concept: PNVis version 0.8.0.
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1 Introduction

Petri nets are a well-accepted formalism for modelling concurrent and distributed
systems in various application areas: Workflow management, embedded systems,
production systems, and traffic control are but a few examples. The main ad-
vantages of Petri nets are their graphical notation, their simple semantics, and
the rich theory for analyzing their behaviour.

In spite of their graphical nature, getting an understanding of a complex
system just from studying the Petri net model itself is quite hard – if not im-
possible. In particular, this applies to experts from some application area who,
typically, are not experts in Petri nets. ‘Playing the token-game’ is not enough
for understanding the behaviour of a complex system. Using suggestive icons for
transitions and places of the Petri net in order to indicate the corresponding
action or document in the application area is only a first step.

Therefore, there have been different approaches that try to visualize the be-
haviour of a Petri net in a way understandable for experts in the application
area. At best, there will be an animation of the model using icons and graphi-
cal features from the corresponding application area. ExSpect [14], for example,
uses the concept of a dashboard in order to visualize the dynamic behaviour of
a system in a way that is familiar to the experts in the application area (e. g.
by using flow meters, flashing lights, etc. as used in typical control panels). In
ExSpect, it is even possible to interact with the simulation via this dashboard.
Another example is the Mimic library of Design/CPN [4, 13], which allows a
Design/CPN simulation to manipulate graphical objects, and the user can in-
teract with the simulation via these graphical elements. This way, one can get
a good impression of the ‘look and feel’ of the final product. A good example is
the model of a mobile phone [10]. Another approach for visualizing Petri nets is
based on graph transformations and their animation: GenGED [1, 2].
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In the PNVis project, we take the next step: The graphical objects manip-
ulated by the simulation are no longer considered to be artifacts for visualizing
information; rather we consider them as a part of the system model. Actually,
they are considered as the physical part of the system. Though simple, this step
has several benefits: First, it makes the interaction between the control system
and the physical world explicit. Second, the physical part can be used for a re-
alistic 3D-visualization of the dynamic behaviour by using the shape and the
dynamic properties of the physical components. Third, the properties of the
physical objects can be used for analysis and verification purposes. For example,
we can exploit the fact that two physical components cannot be at the same
place at a time.

In this paper, we show how a Petri net can be equipped with the information
on the physical objects. Moreover, we discuss the concepts and a prototype of
a tool that uses this information for a 3D-visualization of the system: PNVis
version 0.8.0. Here, the focus is on those aspects of the physical objects that are
necessary for visualization: basically the shape of the objects. The prototype of
PNVis is restricted to low-level Petri nets. The PNVis project, however, has a
much wider scope. For example, we would like to use some physical properties
of the objects such as their weight for analysis purposes. Moreover, PNVis will
support high-level Petri nets, and it will provide concepts for constructing a
system from components in a hierarchical way.

PEP [11] was one of the first Petri Net tools that came up with a 3D-
visualization of Petri net models: SimPep [6]. Basically, SimPep triggers ani-
mations in a VRML model [5] while simulating the underlying Petri net. But,
this simulation imposes a sever restriction on the animations: There is only one
animation at a time; concurrent animations of independent objects are impos-
sible. In this paper, we will present concepts that allow us to have concurrent
animations of independent objects. The trick is to associate animations with
places rather than with transitions.

2 Concepts

In order to animate the behaviour of a Petri net in a 3D-visualization, the net
must be equipped with some information on the physical objects. Moreover, the
behaviour of the objects must be related to the dynamic behaviour of the Petri
net. In the following, we will discuss how to add this information to a net.

Geometry, shapes and animation functions. In a first step, we distinguish those
places of a Petri net that correspond to physical objects. We call these animation
places. The idea is that each token on an animation place corresponds to a phys-
ical object with its individual appearance and behaviour. In order to animate a
physical object, we need two pieces of information: its shape and its behaviour.

Defining the shape of the object is easy: Each animation place is associated
with a 3D-model (e. g. a VRML model [5]) that defines the shape of all tokens
on this place. Defining the behaviour of an object is similar: Each animation
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Fig. 1. A simple toy-train model

place is associated with an animation function, where the animation function is
composed from some predefined animation functions. When a token is produced
on an animation place, an object with the corresponding shape appears and
behaves according to the animation function. For example, the object could
move along a predefined line or the object could appear at some point.

In order to illustrate these concepts, let us consider a simple example: a model
of a toy-train. Figure 1 shows the layout of a toy-train, which consists of two
semicircle tracks sc1 and sc2, which are composed to a full circle. We call this
layout the underlying geometry. For defining such a geometry, there is a set of
predefined geometrical objects such as lines, circle segments, and points. In our
example, there is one toy-locomotive moving clockwise on this circle. The right-
hand side of Fig. 1 shows the corresponding Petri net model, where both places
p1 and p2 are animation places. In this example, the correspondence between
the Petri net model and the physical model is clear from the layout. Formally,
this correspondence is defined by annotating each place with a reference to the
corresponding element in the geometry. Place p1 corresponds to the upper semi-
circle of the geometry sc1 and place p2 corresponds to the lower semicircle of the
geometry sc2. The annotation shape1 defines the shape of the physical objects
corresponding to the tokens on this place. In our example, it is a locomotive for
both places, where the details of the definition of the shape will be discussed in
Sect. 3. For now, you can think of it as a reference to some VRML model of a
toy locomotive. The annotation animation defines the behaviour of the object
corresponding to a token on a place. This behaviour will be started when a to-
ken is added to the place. In our example, the behaviour is a move animation.
Note that, without additional parameters, the animation function refers to the
geometry object corresponding to that place. So, a locomotive corresponding to
a token on place p1 will move on semicircle sc1, and a locomotive corresponding
to a token on place p2 will move on semicircle sc2.

In order to make our example complete, we must also give some information
on how to visualize the geometry objects themselves. To this end, each geometry

1 Note that, in the implementation of the net type for the PNK, we call this extension
dynamic shape.
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Fig. 2. Screenshot of the visualization
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Fig. 3. The model with identities

object is equipped with an annotation shape, which defines the graphical appear-
ance of the geometry object. In our example, the semicircles will be visualized
as tracks. The precise definition of these tracks and their appearance will be dis-
cussed in Sect. 3. Once we have provided all this information, we can start the
3D-visualization of this system. Figure 2 shows a screenshot of the animation of
our example, where the locomotive on place p1 has almost reached the end of
its move animation on sc1.

Object identities. Up to now, the objects corresponding to the tokens on the two
places p1 and p2 are completely independent of each other. When transition t1
fires, the object corresponding to the token on place p1 is deleted and a new
object corresponding to the token on place p2 is created and the move animation
is started. Apart from the fact that this constant deletion and new creation of 3D-
objects would be quite inefficient, this behaviour is not what happens in reality.
In reality, the same physical object, the locomotive, moves from track sc1 to track
sc2. In order to keep the identity of a physical object when a ‘token is moved
from one place to another’, we equip the arcs of the Petri net with an annotation
id, which is some identifier n. We call n the identity of that arc. By assigning the
same identity to an in-coming arc and an out-going arc of a transition, we express
that the corresponding object is moved between those two places. In order not
to clone a physical object, we require that there is a one-to-one correspondence
between the identities of the in-coming and out-going arcs of a transition; i. e.
each identifier occurs exactly once in all in-coming arcs and exactly once in
all out-going arcs. Figure 3 shows the toy-train example equipped with such
identities. Of course, we may have arcs without identity annotations. For an
in-coming arc of a transition, this means that the corresponding object will be
deleted. For an out-going arc of a transition, this means that a corresponding
object will be created, where the shape of the newly created object is defined by
the shape annotation of the place.

Finished and unfinished animations. Next, we consider the relation of the be-
haviour of the Petri net and the animations of the objects corresponding to the
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Fig. 4. A toy-train with a signal

tokens in more detail. When a token is added to an animation place by firing
a transition, the animation for the corresponding object is started. But, what
will happen, if a token is removed from a place before the animation on its cor-
responding object is terminated? One idea would be to immediately stop the
animation. In our example, this would not make much sense, because the loco-
motive would appear to jump from some intermediate position of the track to
the start of the next track. Assuming that transition firing does not take any
time, this behaviour is physically impossible. In our example, we would like to
remove a token from a place only when the animation of the corresponding ob-
ject is finished. On the other hand, there are examples in which it makes sense
to remove a token from a place while an animation on the corresponding object
is running. Whether a transition may remove or must not remove a token with
a corresponding animation running must be explicitly defined in the Petri net
model. When the animation must be finished before the token may be removed,
we add a label finished to the corresponding arc. If there is no such annotation,
the transition need not wait until the animation of the corresponding object is
terminated. In that case, there are two possibilities to proceed: Either the ani-
mation of the object is stopped or the animation is continued on the new place.
When the animation should be continued for the token on the new place, the
corresponding arc has an id with an additionally tag <keep animation>. When
there is no such tag, the running animation is stopped and a new animation is
started on the new place.

In order to illustrate these new concepts, we extend our example: We assume
that there is a signal at the end of track sc1 for which we add a position sig in
the geometry somewhere at the end of track sc1. The idea is that the locomotive
should stop at the end of track sc1, when the signal is in state stop; when the
signal is in state go, the locomotive may enter track sc2. The Petri net in Fig. 4
models this behaviour. The two places p1 and p2 as well as the transitions t1
and t2 are the same as before. The arcs are equipped with identities in order
to keep the same object, i. e. the locomotive, on the tracks. The annotation
finished guarantees that the transitions wait until the move animation of the
locomotive has come to an end (i. e. the locomotive has reached the end of the
track). The two states of the signal are represented by the places stop and go.
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The object corresponding to a token on place stop is a signal with its red light
on: signalStop. The object corresponding to a token on place go is a signal with
its green light on: signalGo. These objects will appear at the point sig of the
geometry (at the end of sc1 ). Due to the loop between place go and transition
t1, transition t1 can fire only when the signal is in state go. The interesting parts
of this model are the identities of transition t1 ; when transition t1 is fired, the
object of the signal from place go stays on this place. Moreover, the animation
is not restarted, because the identity is equipped with the keep animation tag.

Another interesting issue is the animation of the signal. The animation func-
tion is composed from two predefined animation functions: appear, trigger. The
meaning is that these animations are started sequentially. When the first anima-
tion function has finished, the second starts. So, in both cases the signal appears
at position sig; then, it behaves as a trigger. A trigger is an animation func-
tion that simply waits for a user to click on that object in the 3D-visualization.
When this happens, the animation terminates. In combination with the annota-
tions finished at the in-coming arcs of transitions t3 and t4, the user can toggle
the state of the signal by clicking on the signal. A user’s click on the signal ob-
ject will finish the trigger animation running for this object; once the animation
function is finished transition t3 resp. t4 will fire.

Animation results. In order to allow us more complex interactions between
the Petri net model and the animations, the animation functions are equipped
with a result value. The result of an animation could depend on the outcome of
the animation function. For example, the outcome of the trigger animation, could
depend on the part of the object the user clicked on. In some cases, we would like
a transition to fire only when the animation function returns a particular result
n. To this end, we annotate the corresponding arc with result:{n}. Actually,
the annotation result may give a range of values result:{0..3} or result:{0..} or
result:{..10}, where the last two annotations denote ranges that are open in
one direction. The particular annotation result:{..} represents the full range of
possible return values, which means that the corresponding animation must have
terminated, but its value does not matter at all. Therefore, the notation finished
introduced earlier is just a shorthand for result:{..}.

Collisions. In our previous examples, there was only one locomotive. Figure 5
shows a screenshot of a more complex example, where there are two locomotives,
two signals, and two switches. All objects are animated independently of each
other. In particular, the signals as well as the switches can be toggled by the user
by clicking on the corresponding objects. This way, the user can control the route
of the locomotives. In this scenario, it could well happen that two locomotives
move on the same track. In principle, the animations of the different tokens in
a Petri net are completely independent of each other. But, they may interfere,
when two objects approach each other. The reason is that objects are considered
to be solid. And solid objects cannot be at the same position at the same time.
Consider the situation shown in Fig. 5 again. Suppose that the first locomotive
stops in front of the stop signal. Eventually, the second locomotive will approach
the first locomotive. Then, the move animation of the second locomotive will be
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Fig. 5. Screenshot of a more complex toy-train

suspended (but not finished). So the second locomotive will stop right behind
the first locomotive without finishing its animation. When the user clicks on the
signal again, it is switched to go. Then, the first locomotive will be moved to the
next track and a move animation on the next track will be started for this loco-
motive. When the first locomotive has moved a little bit, the second locomotive
will resume its movement again and, eventually, will finish its animation. This
way, the animation reflects the fact that objects are solid. Currently, we avoid
collisions of solid objects, by suspending the corresponding animations when
there is another object in front of it. This behaviour was inspired by material
flow systems in which collisions of shuttles are avoided by infra-red detectors.
But, we could also model other behaviour; for example, we could also stop the
animation of objects, when they collide and return a special result value. This
way, the Petri net model can be aware of collisions. More detailed concepts for
reacting on collisions, however, need further investigations.

Extensions. Here we have discussed those concepts only, that are already im-
plemented in PNVis version 0.8.0. Future versions will support high-level Petri
nets and parameterized animation functions and parameterized 3D-models [7].

3 Realization

The above concepts have been implemented in a prototype tool called PNVis,
which is based on the Petri Net Kernel (PNK) [15] and uses Java3D for imple-
menting the 3D-visualization. In the following, we discuss how the additional
information is provided to PNVis.

There are three types of information that must be provided to the tool: the
annotations of the Petri net, the geometry, and the 3D-models for the animated
objects and the geometry objects. The annotations for the Petri net can be
easily added as extensions to the Petri, by defining a new Petri net type. Here,
we do not discuss the definition of such a Petri net type. Basically, there is a
list of new annotations for each element of a Petri net, which is similar to the
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concept of annotations in PNML [3]. Moreover, the Petri net will have two global
annotations: a reference to a geometry file and to a models file.

Geometry file. The geometry file defines the underlying geometry of the system,
i. e. it lists all the geometry objects in some XML syntax. For our toy-train with
one signal, the geometry file looks as follows:

<geometry>

<circle id="sc1" shape="track" angle="180"

cx="0" cy="0" cz="0" sx="-10" sy="0" sz="0" />

<circle id="sc2" shape="track" angle="180"

cx="0" cy="0" cz="0" sx="10" sy="0" sz="0" />

<point id="sig" x="13" y="0" z="0" />

</geometry>

Basically, the XML file consist of a list of predefined geometry objects, which
are points, lines, circles, and Bezièr curves. Moreover, a geometry object could
be composed from many predefined geometry objects. We call such a geome-
try object a compound object2. The attribute id is the unique identifier of the
corresponding geometry object. This identifier will be used in the geometry an-
notations of the places of the Petri net in order to establish the correspondence
between the Petri net and the geometry. The attribute shape defines the graph-
ical appearance of the geometry object, which is a reference to a definition in
the models file. The other attributes depend on the chosen geometry object.
For example, attributes cx, cy, and cz define the center of a circle segment, at-
tributes sx, sy, and sz define the start point of a circle segment, and attribute
angle defines the angle of the circle segment (in clockwise orientation)3.

Models file. The models file defines the graphical appearance of the shapes used
in the geometry file and the Petri net model. We call the shapes for the geometry
file static models, and we call the shapes for the places of the Petri net dynamic
models. For our toy-train, the models file looks as follows:

<models>

<static>

<model id="track">

<profile> <rectangle height="1.5" width="3" /> </profile>

<texture name="track.jpg" />

</model>

</static>

<dynamic>

<model id="locomotive"><file name="locomotive.wrl" /></model>

<model id="signalGo"><file name="lampRed.wrl" /></model>

<model id="signalStop"><file name="lampGreen.wrl" /></model>

</dynamic>

</models>

2 PNVis version 0.8.0 does not support Bezièr curves and compound geometry objects.
3 Note that PNVis version 0.8.0 ignores the z-coordinates.
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In the static section, we have the definition of tracks, which define the graphical
appearance of the geometry objects in the visualization. It is defined by giving
a profile and a texture. The idea is that the profile will be moved along the
geometry object in order to defines its outline. The texture will be placed on
this outline. This way, we need only one definition of a static shape for all types
of geometry objects. In our example, the profile is a rectangle and the texture is
some JPEG file4.

In the dynamic section, we define several 3D-models (one for each model
referred to in the Petri net). Here, we refer to some VRML models.

In fact, the Petri net from Fig. 4 along with the above geometry file, the
model file, and the VRML files are sufficient for visualizing the Petri net model
with our tool. The separation of the geometry file and the model file allows us
to easily exchange the underlying layout as well as the graphical appearance of
a model. This way, we have a clear separation between the dynamic behaviour
which is modelled in the Petri net, the underlying layout, which is defined in the
geometry file, and the graphical appearance, which is defined in the models file.

4 Conclusion

In this paper, we have introduced concepts that allow us to easily equip a Petri
net with a 3D-visualization. What is more, for obtaining a visualization, no
programming is necessary. We only need to provide some 3D-models, a geometry,
and some animation functions from a set of predefined animation functions.

One of the principles underlying these concepts is separation of concerns. The
3D-visualization part is quite independent from the Petri net itself. This way,
the concept provides an abstraction mechanism, and it is possible to analyze the
behaviour of the system without considering the details of the physical model.
But, this is not always possible. For example, collisions of objects could result in
deadlocks that are not present in the Petri net model alone. The investigation of
such problems and the definition of sufficient conditions for the independence of
the Petri net properties from the physical properties is one of the future research
directions.

The implementation of PNVis version 0.8.0 is now freely available and
demonstrates that the concepts are feasible. PNVis runs on all systems on which
Java and Java3D are installed. More detailed information on PNVis and its code
can be found at [12]. Clearly, there could be much more features for obtaining
more realistic animations. Such features will be added in a future version of
PNVis; in particular, PNVis will also support high-level Petri nets. Which other
features are necessary and appropriate is another direction of future research.
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