
Software Engineering 2
A practical course in software engineering

Ekkart Kindler

I. Introduction

Ekkart Kindler

3 SE 2 (02162 e013), L 01

Introduction

 Motivation

 The role of models in software engineering

 Software engineering & management

 Organisation of this course

 Project & tutorials

 The task

 Technology tutorials

 Forming the groups

Ekkart Kindler

4 SE 2 (02162 e013), L 01

Weekly Schedule (roughly)

Mon Tue Wed Thu Fri

 8-10 lecture

10-12 project

13-15 tutorial

15-17 project

lecture tutorial project

Ekkart Kindler

5 SE 2 (02162 e013), L 01

1. Motivation

 Objectives of this course:

Skills in software engineering!

 What is “software engineering”?

 What is “software”?

 software = program

 software engineering = programming

Ekkart Kindler

6 SE 2 (02162 e013), L 01

Program vs. Software

Software >> Program

Software Engineering >>> Programming

is much more

than

is much much

more than

Ekkart Kindler

7 SE 2 (02162 e013), L 01

Programming vs. SE

Program

Programmer

Programming

Software

Software Engineer

Software Engineering

Ekkart Kindler

8 SE 2 (02162 e013), L 01

Software Engineering is

… much more than programming!

… listening and understanding!

… analytic and conceptual work!

… communication!

… a social process!

… acquiring and using new technologies!

…

… a discipline with proven concepts, methods,
notations, and tools!

… and ever new technologies emerging!

Ekkart Kindler

9 SE 2 (02162 e013), L 01

Experience

Software Engineering requires much experience!

This experience

 can not be taught theoretically!

 will be provided in this course!

 project

 tutorial (new technologies)

 and (only) backed by the lectures

Ekkart Kindler

10 SE 2 (02162 e013), L 01

Analogy revisited

The experience of a big project cannot be

replaced by the experience of many small ones.

Effort per participant

• 10 ECTS = ca. 270h work

• ca. 20h/week

Ekkart Kindler

11 SE 2 (02162 e013), L 01

Objective

Practice the concepts, methods, notations and

tools for software engineering

 improve programming skills

 understanding of the software engineering process

 experiences with problems and concepts for

solving them

 writing and creating documents and models

 use of methods and tools

 practice communication and presentation skills

 capability of teamwork and leadership

 acquire new technologies

 …

Ekkart Kindler Excursion: CDIO

Conceive

Design

Implement

Operate

12 SE 2 (02162 e013), L 01

Ekkart Kindler

13 SE 2 (02162 e013), L 01

Questions

 Why do so many software projects fail?

 Why is software development so hard

(or at least harder as we believe)?

 BTW: What is software?

Ekkart Kindler

14 SE 2 (02162 e013), L 01

Software

 Die Menge aller Programme, Prozeduren und

Objekte, zusammen mit den zugehörigen

Daten und der Dokumentation, die für eine

lauffähige Anwendung nötig oder

wünschenswert sind.

[frei nach Informatik DUDEN und Hesse]

Ekkart Kindler

15 SE 2 (02162 e013), L 01

Software

 The sum of all programs, procedures and

objects along with the associated data and

documentation, which are necessary (or at

least desirable) for running an application on a

computer system.

Ekkart Kindler

16 SE 2 (02162 e013), L 01

Software …

 is becoming more and more complex!

 Exponential growth of software (in „lines of

code“ LOC) within the same product line:

 Apollo (NASA‘s Apollo programme)

 Cars (automotive software)

 …

Ekkart Kindler

17 SE 2 (02162 e013), L 01

Software …

 cannot be „programmed“ by a single person

anymore; a single person cannot fully

comprehend all details of software any more.

 Efforts of 10 to 100 person years (PYs) are

quite standard in software development.

Ekkart Kindler

18 SE 2 (02162 e013), L 01

Software …

 is intangible.

 You cannot touch, see or feel

software. Humans lack a

“natural feeling” of software

and its complexity.

Ekkart Kindler

19 SE 2 (02162 e013), L 01

Software …

 does not wear out,

but becomes of age anyway

(in relation to the environment it is running in

and the expectations of the end user)!

 Software needs „maintenance“! But, this does

not mean the same as in traditional

engineering (where systems physically wear

out).

Ekkart Kindler

20 SE 2 (02162 e013), L 01

Software …

 „lives“ longer than its creators expect it to live.

Ekkart Kindler

21 SE 2 (02162 e013), L 01

Software …

 is everywhere and many lifes depend on it.

Ekkart Kindler

22 SE 2 (02162 e013), L 01

Software Engineering is

… much more than programming!

… listening and understanding!

… analytic and conceptual work!

… communication!

… a social process!

… acquiring new technologies!

Ekkart Kindler

23 SE 2 (02162 e013), L 01

Problems

 imprecise requirements

 mistakable and unclear requirements

 inconsistent requirements

 changing requirements

 changing environments (software / hardware)

 different versions and configurations

 changing tools, notations, languages, methods,
concepts, technologies

 collective knowledge only

 communication

 …

Ekkart Kindler

24 SE 2 (02162 e013), L 01

Software engineering

 is the sum of all means, facilities, procedures,

processes, notations, methods, concepts for

developing, operating and maintaining a

software system.

Ekkart Kindler

25 SE 2 (02162 e013), L 01

Software engineering

Branches:
 Development:

actual development of the software product

 Management:
Manage (control and improve) the development
process

 Quality management:
Planning and implementing measures that
guarantee that the software meets the required
quality

 Software maintenance:
Remove faults occurring in operation, adapt
software to changing requirements and
environments

Ekkart Kindler

26 SE 2 (02162 e013), L 01

Process models

 Process models (life cycle models) are the

„distilled“ experience of successful software

projects.

They define a functional procedure along with

appropriate documents.

 What should be done

 when, and

 how!

document, notation

phase

method

Ekkart Kindler

27 SE 2 (02162 e013), L 01

Process models

 Problem: Often process models are used very

mechanical and in a „meaningless“ way.

 documents just for the sake of the process

 (UML) diagrams just for the sake of UML

 comments just for the sake of comments

Ekkart Kindler

28 SE 2 (02162 e013), L 01

Rule of thumb

 When producing and compiling a document,
ask yourself:
 What should the document be good for?

 Who should be addressed?

 Which information is expected?

 What is the common „pragmatics“?

 …

In short: What is reasonable?

Ekkart Kindler

29 SE 2 (02162 e013), L 01

2. Models in SE

… and a glimpse of how software can

be developed by using models –

without doing any programming at all.

Ekkart Kindler

30 SE 2 (02162 e013), L 01

Modelling

Ekkart Kindler

31 SE 2 (02162 e013), L 01

A Model (Petri net)

semaphor

request1

critical1

idle1

request2

critical2

idle2

Ekkart Kindler Stages

 Examples

 Taxonomy (done on blackboard)

 Glossary

 Model (see next slide)

32 SE 2 (02162 e013), L 01

Ekkart Kindler

33 SE 2 (02162 e013), L 01

1 target

Model for Petri nets Meta model for Petri nets

Models and Meta Models

Petri net model

Place Transition

1 source

Arc

*

PetriNet
context Arc inv:
(self.source.oclIsKindOf(Place) and
 self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)
 and
 self.target.oclIsKindOf(Place))

Token
*

Node

Object

Ekkart Kindler

34 SE 2 (02162 e013), L 01

Syntax (abstract and concrete)

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

target source

:Arc
source target

:Petrinet

:Token

graphical /
concrete
syntax

abstract syntax
(as an UML object
diagram)

Ekkart Kindler

35 SE 2 (02162 e013), L 01

Overview

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

target source

:Arc
source target

:Petrinet

:Token

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

model

meta model

is an
instance of

build-time

runtime

Ekkart Kindler

36 SE 2 (02162 e013), L 01

Benefits of Modelling

 Better understanding

 Mapping of instances to XML syntax (XMI)

 Automatic code generation

 API for creating, deleting and modifying model

 Methods for loading and saving models (in XMI)

 Standard mechanisms for keeping track of changes

(observers)

Ekkart Kindler

37 SE 2 (02162 e013), L 01

The term “meta”

model makes

more sense now!

Class Diagrams are Models too

1 source

1 target

Association Class

ClassDiagram

Meta model for UML (class
diagrams)

UML model

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

* *

Ekkart Kindler

38 SE 2 (02162 e013), L 01

Different Meta-levels: MOF

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

target source

:Arc
source target

:Petrinet

:Token

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

1 source

1 target

Association Class

ClassDiagram

* *

:Class :Class

:Association

:Association

…

…

Ekkart Kindler

39 SE 2 (02162 e013), L 01

Answers:

 Program an editor

 Standard technology for mapping abstract to

concrete syntax: EMF / GMF / EMFT

Ekkart Kindler

40 SE 2 (02162 e013), L 01

EMF/GMF Technology

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

target source

:Arc
source target

:Petrinet

:Token

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Node

Object

model

meta model

is instance
of

concrete syntax abstract syntax

Place

Transition

Arc

Token

generate an
editor

Ekkart Kindler

41 SE 2 (02162 e013), L 01

Benefits of Modelling (cntd.)

 Better Understanding

 Mapping of instances to XML syntax (XMI)

 Automatic Code Generation

 API for creating, deleting and modifying model

 Methods for loading and saving models (in XMI)

 Standard mechanisms for keeping track of changes

(observers)

 Editors and GUIs

Ekkart Kindler

42 SE 2 (02162 e013), L 01

Theses

 We will always have programming and
programmers!

 We should always teach programming!

 But, software engineers should be trained in their
engineering and modelling skills!

 And this is where they should be at their best!

 Most of the rest can be automated!

 Eventually, programming will be for software
engineers as assembler is today for programmers.

