
Software Engineering I (02161)
Week 8

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

Contents

Basic Principles of Good Design

Design Patterns

Low Coupling

High coupling

A B

D E

C

F

Low coupling

A

B

D

E

C

F

Hubert

Low Coupling

High coupling

A B

D E

C

F

Low coupling

A

B

D

E

C

F

Hubert

Hubert

High Cohesion

Low Cohesion
Person

name
cpr-number
companyName
work-address-street
work-address-city
home-address-street
home-address-city

High Cohesion

Address
street
city

Company
name

Person
name
cpr-number

works at

home address

address

Hubert

Hubert

High Cohesion

Low Cohesion
Person

name
cpr-number
companyName
work-address-street
work-address-city
home-address-street
home-address-city

High Cohesion

Address
street
city

Company
name

Person
name
cpr-number

works at

home address

address

Law of Demeter

Law of Demeter
I ”Only talk to your immediate friends”
I Only method calls to the following objects are allowed

I the object itself
I its components
I objects created by that object
I parameters of methods

I Also known as: Principle of Least Knowledge
I Law of Demeter = low coupling
→ delegate functionality
→ decentralised control

Hubert

Hubert

Computing the price of an order

Order

calculate price
calculate base price
calculate discounts

Product
name
price

Customer
name
discount info

OrderLine
quantity

 *

1

1

Hubert

Hubert

Computing the price of an order

OrderLine
quantity
calculate price

Customer
name
discount info
calculate discount

Product
name
price
getPrice(quantity:int)

Order

calculate price
calculate base price
calculate discounts

1

1

 *

Layered Architecture

Eric Evans, Domain Driven Design, Addison-Wesley, 2004

Hubert

Hubert

DRY principle

DRY principle
Don’t repeat yourself
”Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.” The Pragmatic Programmer, Andrew

Hunt and David Thomas

I code
I documentation
I build stystem

Example: Code Duplication

Hubert

Example: Code Duplication

Company
name
c-address-street
c-address-city
printAddress

Address
street
c i ty
printAddress

Company
name

Person
name
cpr-number

works at

home address

address

Person
name
cpr-number
home-address-street
home-address-city
printAddress

works at

Hubert

Hubert

Hubert

Hubert

DRY principle

I Techniques to avoid duplication
I Use appropriate abstractions
I Inheritance
I Classes with instance variables
I Methods with parameters

I Refactor to remove duplication
I Generate artefacts from a common source. Eg. Javadoc

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple,
stupid)

I simplest solution first
I Strive for simplicity

I Takes time!!
I refactor for simplicity

Antoine de Saint Exupéry
”It seems that perfection is reached not when there is nothing
left to add, but when there is nothing left to take away”.

YAGNI principle

YAGNI principle
You ain’t gonna needed it

I Focus on the task at hand
I E.g. using the observer pattern because it might be

needed

→ Different kind of flexibility
I make your design changable

I tests, easy to refactor
I design for change

I Use good OO principles
I High cohesion, low coupling
I Decentralized control
I SOLID principles (next week)

Hubert

Contents

Basic Principles of Good Design

Design Patterns
Composite Pattern
Template Method
Facade
Strategy / Policy
Adapter / Wrapper
Anti-Patterns

Patterns in Architecture

A Pattern Language, Christopher Alexander, 1977

History of Patterns
I Christopher Alexander: Architecture (1977/1978)

I Pattern: a solution to a problem in a context
I Pattern language: set of related patterns

I Kent Beck and Ward Cunningham: Patterns for Smalltalk
applications (1987)

Hubert

Pattern: ”Objects from the User’s World”

Problem: What are the best objects to start a design with?
Constraints: The way the user sees the world should
have a profound impact on the way the system presents
information. Sometimes a computer program can be a
user’s bridge to a deeper understanding of a domain.
However, having a a software engineer second guess the
user is a chancy proposition at best.
Kent Beck: ”Birds, Bees, and Browsers—Obvious sources of Objects” 1994 http://bit.ly/2q4h0GC

http://bit.ly/2q4h0GC

Pattern: ”Objects from the User’s World”

Forces:
– Some people say, ”I can structure the internals of my

system any way I want to. What I present to the user is just
a function of the user interface.” In my experience, this is
simply not so. The structure of the internals of the system
will find its way into the thoughts and vocabulary of the user
in the most insidious way. Even if it is communicated only in
what you tell the user is easy and what is difficult to
implement, the user will build a mental model of what is
inside the system.

– Unfortunately, the way the user thinks about the world isn’t
necessarily the best way to model the world
computationally. In spite of the difficulties, though, it is more
important to present the best possible interface to the user
than to make the system simpler to implement.

Therefore:

Pattern: ”Objects from the User’s World”

Solution: Begin the system with objects from the user’s
world. Plan to decouple these objects from the way you
format them on the screen, leaving only the computational
model.

History of Patterns

I Christopher Alexander: Architecture (1977/1978)
I Kent Beck and Ward Cunningham: Patterns for Smalltalk

applications (1987)
I Ward Cunningham: Portland Pattern Repository
http://c2.com/ppr

I the Wiki Wiki Web was invented for this purpose
I Gang of four: Design Patterns book (1994) (Erich Gamma,

Richard Helm, Ralph Johnson, John Vlissides)
I Pattern conferences, e.g. PloP (Pattern Languages of

Programming) since 1994
I Implementation Patterns, Architectural Patterns, Analysis

Patterns, Domain Patterns, Anti Patterns . . .

http://c2.com/ppr

Design Patterns

I Defined in the Design Pattern Book (1994)
I Best practices for object-oriented software
I Creational Patterns

I Abstract Factory, Builder, Factory Method, Prototype,
Singleton

I Structural Patterns
I Adapter, Bridge, Composite, Decorator, Facade, Flyweight,

Proxy
I Behavioral Patterns

I Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template
Method, Visitor

Places to find design patterns:

I Portland Pattern repository http:
//c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

I Wikipedia http://en.wikipedia.org/wiki/
Design_pattern_(computer_science)

I Wikipedia
http://en.wikipedia.org/wiki/Category:
Software_design_patterns

http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Example: compute costs for components

I Task: compute the overall costs of a bike
I Bike

I Frame (1000 kr)
I Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)
I Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)

Example: compute costs for components

Part

cost

computeCost()

Assembly

computeCost()
*

 *

...... spoke29:Part

{ c o s t = 1 }

tire1:Part

{ cos t = 100}

spoke28:Part

{ c o s t = 1 }

rim1:Part

{ cos t = 100}

spoke1:Part

{ c o s t = 1 }

frame:Part

{cos t = 1000}

wheel2:Assemblywhee11:Assembly

bike:Assembly

Hubert

Hubert

Hubert

Hubert

Example: compute costs for components

Part

cost

computeCost()

Assembly

computeCost()

{ re turn cost } { int costs = 0;
 foreach (Assembly a : assemblies) {
 costs += p.computeCost();
 }
 foreach (Part p : parts) {
 costs += p.computeCost();
 }
 return costs;
}

*

 *

Hubert

Example: compute costs for components

Component

computeCost()

{int costs = 0;
 foreach (Component c : components) {
 costs += c.computeCost();
 }
 return costs;
}

*

{return cost}

Assembly

computeCost()

Part
cost
computeCost()

Composite Pattern

Composite Pattern
”Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.”

Hubert

Composite Pattern: Graphics

I Class Diagram

I Instance diagram

Template Method Problem

Overdue method for Book:
1 compute due date for a book

a get the current date
b add 4 weeks for the book

2 check if the current date is after the due date
Overdue method for CD:

1 compute due date for a cd
a get the current date
b add 2 weeks for loan for the cd

2 check if the current date is after the due date

Hubert

Hubert

Hubert

Template Method

Book
..
..
getMaxDaysForLoan():int

Medium
borrowDate
..
..
getMaxDaysForLoan():int
isOverdue(Calendar date):bool

Cd
..
..
getMaxDaysForLoan():int

public abstract class Medium {

public boolean isOverdue(Calendar date) {
if (!isBorrowed()) {
return false;

}
Calendar dueDate = new GregorianCalendar();
dueDate.setTime(borrowDate.getTime());
dueDate.add(Calendar.DAY_OF_YEAR, getMaxDaysForLoan());
return date.after(dueDate);

}

public abstract int getMaxDaysForLoan();
}

Hubert

Template Method

Template Method
”Define the skeleton of an algortihm in an operation, deferring
some steps to subclasses. Template Method lets sublcasses
redefine certain steps of an algorithm without changing the
algorithm’s structure.”

ConcreteClass2

primitiveMethod1
primitiveMethod2
...

AbstractClass

templateMethod
primitiveMethod1
primitiveMethod2
...

ConcreteClass1

primitiveMethod1
primitiveMethod2
...

The template method defines its algortihm based on
primitiveMethod1, ...

PrimitiveMethod1, ... in AbstractClass are usually
abstract, but they could also define some default
behavior.

Template Method

public abstract class Application {
public void openDocument(String name) {
if (canOpenDocument(name)) {
Document doc = doCreateDocument(name);
if (doc != null) {
docs.add(doc);
aboutToOpenDocument(doc);
doc.open();
doc.read();

}
}

}
}

Hubert

Facade

Facade
”Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that makes
the subsystems easier to use.”

Design Patterns, Addison-Wesley, 1994

Example Compiler

Design Patterns, Addison-Wesley, 1994

Hubert

Example: Library Application

Eric Evans, Domain Driven Design, Addison-Wesley,

2004

I LibApp is the application facade

Hubert

Strategy / Policy: Problem

Different strategies for layouting text: simple, TEX, array,
. . . Example: Text formatting

Composition

Repair()

public void repair() {
...
if (strategy = "simple")

// Do simple linebreak
else if (strategy = "tex")

// Use TeX’s algorithm
else if (strategy = "array")

// Do array style linebreak
..

}

Solution 1: Template Method

TeXComposition

Compose()

Composition

Repair()
Compose()

SimpleComposition

Compose()

ArrayComposition

Compose()

public void repair() {
this.compose();

}

Strategy Pattern: Solution

Design Patterns, Addison-Wesley, 1994

Hubert

Strategy / Policy

Strategy / Policy
”Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.”

Design Patterns, Addison-Wesley, 1994

Adapter / Wrapper: Problem

I I want to include a text view as part of my graphic shapes
I Shapes have a bounding box
I But text views only have an method GetExtent()

Hubert

Example: Using text views in a graphics editor

Design Patterns, Addison-Wesley, 1994

Adapter / Wrapper

Adapter / Wrapper
”Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.”

Design Patterns, Addison-Wesley, 1994

Anti-Pattern

Anti Pattern
”In computer science, anti-patterns are specific repeated practices that
appear initially to be beneficial, but ultimately result in bad consequences that
outweigh the hoped-for advantages.” from Wikipedia
(http://en.wikipedia.org/wiki/Anti-pattern)

I ”Patterns of failure”
I AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis

by William J. Brown, Raphael C. Malveau, and Thomas J. Mowbray
I Example: Analysis Paralysis

I Stuck with developing the analysis model.
I The model never is good enough.
I Each time one revisits the same problem, a new variant

comes up
I Solution: Proceed to design and implementation. This gives

new insights into the analysis → iterative / evolutionary
approach

I For a list of anti-patterns see http://en.wikipedia.org/wiki/
Anti-pattern#Recognized.2FKnown_Anti-Patterns)

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern#Recognized.2FKnown_Anti-Patterns
http://en.wikipedia.org/wiki/Anti-pattern#Recognized.2FKnown_Anti-Patterns
Hubert

Next Week

I User Interface
I Observer Pattern
I Model-View-Controller (MVC)

I SOLID Principles

	Basic Principles of Good Design
	Design Patterns
	Composite Pattern
	Template Method
	Facade
	Strategy / Policy
	Adapter / Wrapper
	Anti-Patterns

