Software Engineering | (02161)
Week 8

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

=
—
=

i

Contents

Basic Principles of Good Design

Design Patterns

Low Coupling

N

High coupling

Hubert

Low Coupling

High coupling

“Cluskex

Low coupling P]
Oua polLl S

anrwu.v\ Le

hawe
bu'sL-
Yeolesidi

W

Hubert

Hubert

High Cohesion

Low Cohesion

Person

name
cpr-number

companyName
work-address-street -—?7 At ese
work-address-city

home-address-street's Addvess

home-address-city

N
7 Stveel

L S

Hubert

Hubert

High Cohesion

Low Cohesion

Person

name
cpr-number
companyName
work-address-street
work-address-city
home-address-street
home-address-city

High Cohesion

Person Address
home address»
name street
cpr-number city
<adgress
Compan
workp at» pany
name

Law of Demeter

Law of Demeter

» "Only talk to your immediate friends”
» Only method calls to the following objects are allowed

» the object itself

» its components

» objects created by that object
» parameters of methods

» Also known as: Principle of Least Knowledge
» Law of Demeter = low coupling

— delegate functionality

— decentralised control

Cq

Hubert

Hubert

Computing the price of an order

v

an Order ‘ an Order Line | ‘ aProduct ‘ { aCustomer |
|
| |

I J _'_/
calculatePri Ei ‘ L
getQuantity
L SN i

getProduct |
(S -
Order Customer

aProduct
LI ! calculate price name

calculate base price discount info

-

getPricingDetails ' I calculate discounts

OrderLine T\ Product
quantity name

T | price

—
calculateBasePrice |

calculateDiscounts ‘

[

f

1 | getDiscountinfo -)

E | | 4? violabion 4 the

‘ j ‘ law ol Dew et

Hubert

Hubert

Computing the price of an order

-] 1 |
an Order J ‘ an Order Line ‘ ‘ aProduct aCustomer
|} SN [(S | —
calculatePrice I I Order Customer
L g | | | calculate price sjname
calculatePrice calculate base price 1T | discount info
‘ N —a ‘ calculate discounts calculate discount
‘ |
| getbiscountedValue (an Order) | OrderLine Product
‘ quantity name
getEaseVallie I calculate price 1" | price
m | getPrice(quantity:int)

Layered Architecture

gl
Colsrow

/ \ Presentation

>

Domain

Application |__

1

v

;"" T lkuwous cSoul fy
i /’7\77 \ toes ust

Infrastructure/ _\|
Database

Eric Evans, Domain Driven Design, Addison-Wesley, 2004

ow
8ol

low c.ouvae\b‘j

hebweew [ayevs

Hubert

Hubert

DRY principle

DRY principle

Don’t repeat yourself

"Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.” mme eragmatic programmer, Andrew

Hunt and David Thomas

» code
» documentation
» build stystem

Example: Code Duplication

Person

name
cpr-number
¢CompanyName
home-address-street
home-address-cit:
printAddress 1T

works at»

Company

name
c-address-street 1
c-address-city

printAddress -T

Hubert

Example: Code Duplication

Person

Person
name

cpr-number name home addre: /{treet
home-; _street cpr-number
home-address-city

printAddres

printAddress A

address

workp at»

Company
Compan
name workp ate pany %
g-address-street name
c-address-city
printAddress

Hubert

Hubert

Hubert

Hubert

DRY principle

» Techniques to avoid duplication

» Use appropriate abstractions

» Inheritance

Classes with instance variables
» Methods with parameters

» Refactor to remove duplication
» Generate artefacts from a common source. Eg. Javadoc

v

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple,
stupid)

» simplest solution first
» Strive for simplicity

» Takes time!!
» refactor for simplicity

Antoine de Saint Exupéry
"It seems that perfection is reached not when there is nothing
left to add, but when there is nothing left to take away”.

YAGNI principle

YAGNI principle
You ain’t gonna needed it

» Focus on the task at hand

» E.g. using the observer pattern because it might be
needed
— Different kind of flexibility

» make your design changable
» tests, easy to refactor

-(d&sign for change~
» Use good OO principles

» High cohesion, low coupling
» Decentralized control

& SOLID principles (next w@

Hubert

Contents

Basic Principles of Good Design

Design Patterns
Composite Pattern
Template Method
Facade
Strategy / Policy
Adapter / Wrapper
Anti-Patterns

Patterns in Architecture

182 EATING ATMOSPHERE

. we have already pointed out how vitally important all kigds
of communal cating azc in helping to maintain 2 bond among 4
group of people—coMMUNAL EATING (147) 5 and we have given
some idea of how the common eating may be placed as part of th
kitchen itself—rarmiiouse xireuEn (139). This pattem
some details of the eating atmosphere.

oo

When people eat together, they may actually be together
in spirit—or they may be far apart. Some rooms invite
people to eat leisurely and comfortably and feel together,
while others force people to cat as quickly as possible sg
they can go somewhere else to relax.

Above all, when the table has the same light all over it, snd
has the same light level on the walls around it, the light does
nothing to hold people together; the intensity of fecling is quite
likely to disolve; there is ittle sense that there is any special
kind of gathering. But when there is a soft light, hung low over
the table, with dark walls around so that this one point of light
lights up people’s faces and is a focal point for the whole group,
then a meal can become a special thing indeed, @ bond, com-
‘munion.

“Therefore:

Put a heavy table in the center of the eating space—
large enough for the wholc family or the group of people
using it. Put a light over the table to create a pool of light
over the group, and enclosc the space with walls or with
contrasting darkness. Make the space large enough so the
chairs can be pulled back comfortably, and provide shelves
and counters close at hand for things related to the meal.

A Pattern Language, Christopher Alexander, 1977

BUILDINGS

Get the details of the light from PooLs oF LiGuT (252); and
choose the colors to make the place warm and dark and com-
fortable at night—wary corors (250); put a few soft chairs
nearby—DIFFERENT CHAIRS (251); or put BUILT-IN SEATS
(202) with big cushions against one wall; and for the storage
spice—oPEN suELVES (200) and WAIST-HIGH SHELF (201). . . .

History of Patterns

» Christopher Alexander: Architecture (1977/1978)
» Pattern: a solution to a problem in a context
» Pattern language: set of related patterns

A Pattern Language

Towns *Buildings - Construction

Christopher Alexander
Sara Ishikawa - Murray Silverstein

WITHL

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

» Kent Beck and Ward Cunningham: Patterns for Smalltalk
applications (1987)

Hubert

Pattern: "Objects from the User's World”

Problem: What are the best objects to start a design with?

Constraints: The way the user sees the world should
have a profound impact on the way the system presents
information. Sometimes a computer program can be a
user’s bridge to a deeper understanding of a domain.
However, having a a software engineer second guess the
user is a chancy proposition at best.

Kent Beck: "Birds, Bees, and Browsers—Obvious sources of Objects” 1994 http://bit.1ly/2q4h0GC

http://bit.ly/2q4h0GC

Pattern: "Objects from the User's World”

Forces:

— Some people say, "l can structure the internals of my
system any way | want to. What | present to the user is just
a function of the user interface.” In my experience, this is
simply not so. The structure of the internals of the system
will find its way into the thoughts and vocabulary of the user
in the most insidious way. Even if it is communicated only in
what you tell the user is easy and what is difficult to
implement, the user will build a mental model of what is
inside the system.

— Unfortunately, the way the user thinks about the world isn’t
necessarily the best way to model the world
computationally. In spite of the difficulties, though, it is more
important to present the best possible interface to the user
than to make the system simpler to implement.

Therefore:

Pattern: "Objects from the User's World”

Solution: Begin the system with objects from the user’s
world. Plan to decouple these objects from the way you
format them on the screen, leaving only the computational
model.

History of Patterns

» Christopher Alexander: Architecture (1977/1978)

» Kent Beck and Ward Cunningham: Patterns for Smalltalk
applications (1987)
» Ward Cunningham: Portland Pattern Repository
http://c2.com/ppr
» the Wiki Wiki Web was invented for this purpose

» Gang of four: Design Patterns book (1994) (Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides)

» Pattern conferences, e.g. PloP (Pattern Languages of
Programming) since 1994

» Implementation Patterns, Architectural Patterns, Analysis
Patterns, Domain Patterns, Anti Patterns ...

http://c2.com/ppr

Design Patterns

v

Defined in the Design Pattern Book (1994)
Best practices for object-oriented software
Creational Patterns
» Abstract Factory, Builder, Factory Method, Prototype,
Singleton
Structural Patterns
» Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
Proxy
Behavioral Patterns

» Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template
Method, Visitor

v

v

v

v

Places to find design patterns:

» Portland Pattern repository http:
//c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

» Wikipedia http://en.wikipedia.org/wiki/
Design_pattern_ (computer_science)

» Wikipedia
http://en.wikipedia.org/wiki/Category:
Software_design_patterns

http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Example: compute costs for components

» Task: compute the overall costs of a bike
» Bike
» Frame (1000 kr)

» Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)
» Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)

Example: compute costs for components

Pa#t m Assembly
cost SV comFuteCOSt() g [
cor'nputeCost() u ' 4

. .

e TCemnor (os\(pvr-
[- e e

[frame:Part] [whee11:
[{cost = 1000} | l

wheel2: bl ‘

[{cost =1}] [(cost =1}] [(cosl 100}] [{cust 100}] [(cos& =1}]

Hubert

Hubert

Hubert

Hubert

Example: compute costs for components

Part

cost

*

Assembly

computeCost()

{return cost} B‘

computeCost()
1
|

{int costs = 0;
foreach (Assembly a : assemblies) {
costs +=.computeCost();

}

foreach (Part p : parts) {
costs += p.computeCost();
}

return costs;

}

Hubert

Example: compute costs for components

Component

computeCost()

A

Part

cost

computeICOSt()

{return cost}

Assembly
computeCost()
|

{int costs = 0;
foreach (Component ¢ : components) {
costs += c.computeCost();

}

return costs;

Composite Pattern

Composite Pattern

"Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.”

Graphic

Draw()

:—.—r' _____ I I I] graphics
IV'\O\:SL Line Rectangle | | Text Picture ro>—-
—_—

Draw() | | Draw() Draw() t» ------ T
RO(Graphic g) O-f === -1

GetChild(int) - -I add g to list of graphics ‘ﬁ

Hubert

Composite Pattern: Graphics

» Class Diagram

Graphic

Draw()

A

[I [1 graphics
Line Rectangle Text Picture il
8§ E N R R e G
|

» Instance diagram

aPicture

GetChild(int)

—---I add g to list of graphics ﬁ

aRectangle

ek uun
13 O\IC‘(J;L

Template Method Problem l

Overdue method for Book:
1 compute due date for a book

a get the current date
b add‘4 weeks]for the book

2 check if the current date is after the due date
Overdue method for CD:

1 compute due date for a cd
a get the current date

b add|2 weeks ifor loan for the cd
2 check if the current date is after the due date

"Rocle

18 Oy dwe

Hubert

Hubert

Hubert

Template Method

Medium
borrowDate
getMaxDaysForLoan()iint J—— a"—~$‘ru|-

—kW/)]At W“‘“’l — \sOverdue(Caler;;ardale) bool

Book Cd

getMaxDaysForLoan():int getMaxDaysForLoan():int

public abstract class Medium {

public boolean isOverdue (Calendar date) {

if (!isBorrowed()) {
return false;

}

Calendar dueDate = new GregorianCalendar () ;

dueDate.setTime (borrowDate.getTime ()) ;

dueDate.add (Calendar.DAY_OF_YEAR, getMaxDaysForLoan());

return date.after (dueDate);
}
public abstract int getMaxDaysForLoan () ;

}

Hubert

Template Method

Template Method

"Define the skeleton of an algortihm in an operation, deferring
some steps to subclasses. Template Method lets sublcasses
redefine certain steps of an algorithm without changing the

algorithm’s structure.”

AbstractClass

templateMethod
primitiveMethod1
primitiveMethod2

i

ConcreteClass1 ConcreteClass2

primitiveMethod1 primitiveMethod1
primitiveMethod2 primitiveMethod2

The template method defines its algortihm based on
primitiveMethod1, ...

abstract, but they could also define some default

PrimitiveMethod1, ... in AbstractClass are usually
behavior.

Template Method

docs
D. A
Save() AddDocument()
Open() OpenDocument()
Close() DoCreateDocumenty()
DoRead() CanOpenDocumenty()
AboutToOpenDocument()
MyDocument < ----------1 Application
—
DoRead() DoCreateDocument() ©--1--- ‘
CanOpenDocument() —
About‘f_@enDocument()

public abstract class Application {
public void openDocument (String name) { +equ¢ngQ}bedk

if (canOpefDocument (name)) {
Document doc = doCreateDocument (name) ;
if (doc !'= nully {
docs.add (doc) ;
aboutToOpenDocument (doc) ;
doc.open () ;
doc.read () ;

Hubert

Facade

Facade
"Provide a unified interface to a set of interfaces in a

subsystem. Facade defines a higher-level interface that makes
the subsystems easier to use.”

@ ﬁl client classes
Facade)
subsystem classes

Design Patterns, Addison-Wesley, 1994

Example Compiler

Compiler

Compile()

]
'
'
]
1
1
1
]
]
I
'
]
|
I
[

'—>| Scanner f——bi Token—'lﬂ—

---b‘ Parser | I Symbol |<—

I ———

ProgramNodeBuilder |- - -bl ProgramNode

‘ StackMachineCodeGenerator I i RISCCodeGenerator I

ExpressionNode
VariableNode

Design Patterns, Addison-Wesley, 1994

Hubert

Example: Library Application

H » LibApp is the application facade

[P
Infrastructure/
Database

Eric Evans, Domain Driven Design, Addison-Wesley,

2004

Hubert

Strategy / Policy: Problem

Different strategies for layouting text: simple, TgX, array,
... Example: Text formatting

Composition

Repair()

public void repair() {

if (strategy = "simple")
// Do simple linebreak
else if (strategy = "tex")
// Use TeX’'s algorithm
else if (strategy = "array")
// Do array style linebreak

Solution 1: Template Method

public void repair ()

}

Composition

Repair()
Compose()

N

SimpleComposition

TeXComposition

ArrayComposition

Compose()

Compose()

Compose()

this.compose () ;

{

Strategy Pattern: Solution

bcompositor

Composition

Traverse()

==

Compositor

Compose()

A

j [

SimpleCompositor

TeXCompositor

ArrayCompositor

compositor->Compose() '

Compose()

Compose()

Compose()

Design Patterns, Addison-Wesley, 1994

Hubert

Strategy / Policy

Strategy / Policy

"Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it

strate
Contextinterface() Algorithminterface()
IfoncreteStrategyA ConcreteStrategyB ConcreteStrategyC
Mgorithmlnterface() Algorithminterface() Algorithminterface()

Design Patterns, Addison-Wesley, 1994

Adapter / Wrapper: Problem

» | want to include a text view as part of my graphic shapes

» Shapes have a bounding box
» But text views only have an method GetExtent()

DrawingEditor

Shape

BoundingBox()
CreateManipulator()

l_—A e

Line

TedShope]

BoundingBox()

i rzauu Im %K(
CreateManipulator() Crecde r@é ﬁx(

=

TextView

GetExtent()

Hubert

Example: Using text views in a graphics editor

DrawingEditor

Shape

BoundingBox()

CreateManipulator()

A

Line

TextShape

text

BoundingBox()

CreateManipulator()

BoundingBox() o-
CreateManipulator() ©-

Design Patterns, Addison-Wesley, 1994

TextView

GetExtent()

S ‘|Leturn text—>GetExtent() %
e ‘Lveturn new TextManipulator

Adapter / Wrapper

Adapter / Wrapper

"Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.”

Target Adaptee

Request() SpecificRequest()
% adaptee
Adapter
Request() O-f----------~- adaptee—>SpecificRequest() 1

Design Patterns, Addison-Wesley, 1994

Anti-Pattern

Anti Pattern

”In computer science, anti-patterns are specific repeated practices that
appear initially to be beneficial, but ultimately result in bad consequences that
outweigh the hoped-for advantages.” from Wikipedia
(http://en.wikipedia.org/wiki/Anti-pattern)

» “Patterns of failure”

> AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis
by Willia

m J. Brown, Raphael C. Malveau, and Thomas J. Mowbray
> ExamplesAnalysis Paralysis

>

>

>

Stuck with developing the analysis model.

The model never is good enough.

Each time one revisits the same problem, a new variant
comes up

Solution: Proceed to design and implementation. This gives
new insights into the analysis — iterafive / evolutionary
approach

> For a list of anti-patterns see http://en.wikipedia.org/wiki/
Anti-pattern#Recognized.2FKnown_Anti-Patterns)

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern#Recognized.2FKnown_Anti-Patterns
http://en.wikipedia.org/wiki/Anti-pattern#Recognized.2FKnown_Anti-Patterns
Hubert

Next Week

» User Interface

» Observer Pattern
» Model-View-Controller (MVC)

» SOLID Principles

	Basic Principles of Good Design
	Design Patterns
	Composite Pattern
	Template Method
	Facade
	Strategy / Policy
	Adapter / Wrapper
	Anti-Patterns

