
Software Engineering I (02161)
Week 6

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018



Contents

Implementing Associations

Interfaces

Project planning

Project



Implementing Associations: Cardinality 0..1

0..1
BA

A
b: B

Associations and
attributes are 
treated the same

I Field can be null
public class A {

private B b;

public B getB() { return b; }

public void setB(B b) { this.b = b; }
}

Hubert



Implementing Associations: Cardinality 1

1
BA

I Field may not be null
public class A {

private B b = new B(); // 1st way of doing it

public A(B b) { this.b = b;} // 2nd way

public B getB() { // 3rd way
if (b == null) {b = computeB();}
return b;

}

public void setB(B b) { if (b != null) {this.b = b;} }
}

Hubert



Implementing Associations: Cardinality 1

1
BA

I Field may not be null

public class A {

private B b = new B(); // 1st way of doing it

public A(B b) { this.b = b;} // 2nd way

public B getB() { // 3rd way
if (b == null) {b = computeB();}
return b;

}

public void setB(B b) { if (b != null) {this.b = b;} }
}



Implementing Associations: Cardinality 1

1
BA

I Field may not be null
public class A {

private B b = new B(); // 1st way of doing it

public A(B b) { this.b = b;} // 2nd way

public B getB() { // 3rd way
if (b == null) {b = computeB();}
return b;

}

public void setB(B b) { if (b != null) {this.b = b;} }
}

Hubert



Interface Collection<E>

Operation Description
boolean add(E e) returns false if e is in the collection
boolean remove(E e) returns true if e is in the collection
boolean contains(E e) returns true if e is in the collection
Iterator<E> iterator() allows to iterate over the collection
int size() number of elements

Hubert



Implementing Associations: Cardinality *

*
BA

Default: Unordered, no duplicates

public class A {
private Set<B> bs = new HashSet<B>();
...

}

*
{o rde red } BA

public class A {
private List<B> bs = new ArrayList<B>();
...

}

Hubert



Implementing Associations: Cardinality *

*
BA

Default: Unordered, no duplicates

public class A {
private Set<B> bs = new HashSet<B>();
...

}

*
{o rde red } BA

public class A {
private List<B> bs = new ArrayList<B>();
...

}

Hubert



Encapsulation problem: getStudents

StudentUniversity
*

University dtu = new University("DTU");
..
Set<Student> students = dtu.getStudents();

Student hans = new Student("Hans");
students.add(hans);
Student ole = dtu.findStudentNamed("Ole");
students.remove(ole);
...

Solution: getStudents returns an unmodifiable set

public void Set<Student> getStudents() {
return Collections.unmodifiableSet(students);

}

Hubert



Encapsulation problem: getStudents

StudentUniversity
*

University dtu = new University("DTU");
..
Set<Student> students = dtu.getStudents();

Student hans = new Student("Hans");
students.add(hans);
Student ole = dtu.findStudentNamed("Ole");
students.remove(ole);
...

Solution: getStudents returns an unmodifiable set

public void Set<Student> getStudents() {
return Collections.unmodifiableSet(students);

}

Hubert



Encapsulation problem: getStudents

StudentUniversity
*

University dtu = new University("DTU");
..
Set<Student> students = dtu.getStudents();

Student hans = new Student("Hans");
students.add(hans);
Student ole = dtu.findStudentNamed("Ole");
students.remove(ole);
...

Solution: getStudents returns an unmodifiable set

public void Set<Student> getStudents() {
return Collections.unmodifiableSet(students);

}

Hubert



Encapsulation problem: setStudents

StudentUniversity
*

University dtu = new University("DTU");
..
Set<Student> students = new HashSet<Student>();
dtu.setStudents(students);

Student hans = new Student("Hans");
students.add(hans);
Student ole = dtu.findStudentNamed("Ole");
students.remove(ole);
...

Solution: no setStudents or setStudents copies the set

public void setStudents(Set<Student> stds) {
students = new HashSet<Student>(stds);

}



Encapsulation problem: setStudents

StudentUniversity
*

University dtu = new University("DTU");
..
Set<Student> students = new HashSet<Student>();
dtu.setStudents(students);

Student hans = new Student("Hans");
students.add(hans);
Student ole = dtu.findStudentNamed("Ole");
students.remove(ole);
...

Solution: no setStudents or setStudents copies the set

public void setStudents(Set<Student> stds) {
students = new HashSet<Student>(stds);

}



Solution: How to change the association?

StudentUniversity
*

public class University {

private Set<Student> bs = new HashSet<Student>();

public void addStudent(Student s) {students.add(student);}
public void containsStudent(Student s) {return students.contains(s);}
public void removeStudent(Student s) {students.remove(s);}

}

Hubert



Bi-directional associations

Person
name: String {read only}

Company
name: String {read only}

0..1employer
*

employee

Implemented as two uni-directional associations

Person
name: String {read only}

Company
name: String {read only}

*
employee

0..1employer

Hubert



Bi-directional associations

Person
name: String {read only}

Company
name: String {read only}

0..1employer
*

employee

Implemented as two uni-directional associations

Person
name: String {read only}

Company
name: String {read only}

*
employee

0..1employer



Referential Integrity

c2:Companyp2:Person

p1:Person c1:Company

Referential Integrity:
∀c : Company : ∀p : Person

p ∈ c.employee =⇒ p.company = c
∧

p ∈ p.company .employees

Hubert



Referential Integrity

c2:Companyp2:Person

p1:Person c1:Company

Referential Integrity:
∀c : Company : ∀p : Person

p ∈ c.employee =⇒ p.company = c
∧

p ∈ p.company .employees



Referential Integrity: setEmployer

c2:Companyp2:Person

p1:Person c1:Company

In a client

Person p = new Person();
Company c = new Company();
p.setEmployer(c);
c.addEmployee(p);

better: In Person

public void setEmployer(Company c) {
employer = c;
c.addEmployee(this);

}

Hubert



Referential Integrity: setEmployer

c2:Companyp2:Person

p1:Person c1:Company

In a client

Person p = new Person();
Company c = new Company();
p.setEmployer(c);
c.addEmployee(p);

better: In Person

public void setEmployer(Company c) {
employer = c;
c.addEmployee(this);

}

Hubert



Referential Integrity: setEmployer

c2:Companyp2:Person

p1:Person c1:Company

In a client

Person p = new Person();
Company c = new Company();
p.setEmployer(c);
c.addEmployee(p);

better: In Person

public void setEmployer(Company c) {
employer = c;
c.addEmployee(this);

}



Referential Integrity: addEmployee

c2:Companyp2:Person

p1:Person c1:Company

public void addEmployee(Person p) {
employees.add(p);
p.setEmployer(this);

}

Hubert



Referential Integrity: implementation

public void setEmployer(Company c) {
employer = c;
c.addEmployee(this);

}

public void addEmployee(Person p) {
employees.add(p);
p.setEmployer(this);

}

public void setEmployer(Company c) {
if (employer == c) { return; }
employer = c;
c.addEmployee(this);

}

public void addEmployee(Person p) {
if (employees.contains(p) {

return;
}
employees.add(p);
p.setEmployer(this);

}
Summary

I Avoid bi-directional associations if possible
I Don’t rely on that the clients will do the bookkeeping for you



Referential Integrity: implementation

public void setEmployer(Company c) {
employer = c;
c.addEmployee(this);

}

public void addEmployee(Person p) {
employees.add(p);
p.setEmployer(this);

}

public void setEmployer(Company c) {
if (employer == c) { return; }
employer = c;
c.addEmployee(this);

}

public void addEmployee(Person p) {
if (employees.contains(p) {

return;
}
employees.add(p);
p.setEmployer(this);

}

Summary
I Avoid bi-directional associations if possible
I Don’t rely on that the clients will do the bookkeeping for you

Hubert



Referential Integrity: implementation

public void setEmployer(Company c) {
employer = c;
c.addEmployee(this);

}

public void addEmployee(Person p) {
employees.add(p);
p.setEmployer(this);

}

public void setEmployer(Company c) {
if (employer == c) { return; }
employer = c;
c.addEmployee(this);

}

public void addEmployee(Person p) {
if (employees.contains(p) {

return;
}
employees.add(p);
p.setEmployer(this);

}
Summary

I Avoid bi-directional associations if possible
I Don’t rely on that the clients will do the bookkeeping for you

Hubert



Part of relationship

Special type of associations
I aggregation

I composition

I Use part of instead of has a
→ A car has an engine = an engine is part of the car
→ But Peter has a house != the house is part of Peter

Hubert

Hubert

Hubert



Composition

1. A part can only be part of one object
2. The life of the part object is tied to the life of the containing

object

Hubert

Hubert



Composition

1. A part can only be part of one object
2. The life of the part object is tied to the life of the containing

object

Hubert



Composition: Implementation issues

I Important concept with C++: No automatic garbage
collection

I Destructor has to destroy parts
I Rule of thumb: Don’t expose the parts to the outside

I Not as relevant in Java: Java has automatic garbage
collection

I Rule of thumb: Don’t use composition unless you need its
semantics

Hubert



Contents

Implementing Associations

Interfaces

Project planning

Project



Interfaces

Hubert



Contents

Implementing Associations

Interfaces

Project planning

Project



Project Planning

I Project plan
I Defines how work is done
I Estimates resources (time, person/months): price

I Project planning
I Proposal stage: Price, Time to finish
I During the project: Progress tracking, Adapt to changes



Traditional Project scheduling

Ian Sommerville, Software Engineering 9, 2010

Hubert



Traditional Processes

I milestones/deliverables: system specification, design
specification, . . .

I Typical tasks: Work focused on system components



Schedule Representation: Gantt Chart / Bar chart

Ian Sommerville, Software Engineering 9, 2010

Hubert



Traditional: Algorithmic cost modelling: COCOMO

I Constructive Cost Model (COCOMO) Bary Boehm et al.,
1981, . . .

I based on empirical studies
I LOC (lines of code) estimation

I e.g. function point analysis based on requirements:
complexity of functions and data

I Effort: in person months: PM = a ∗ LOCb

I a: type of software: 2.4 ≤ a ≤ 3.6
I b: cost drivers like platform difficulty, team experience, . . . :

1 ≤ b ≤ 1.5
I Project duration: TDEV = 3 ∗ PM0.33+0.2∗(b−1.01)

I Staffing: STAFF = PM/TDEV

I Brooks law: ”adding human resources to a late software
project makes it later”. (The Mythical Man Month Fred
Brooks 1975)



Traditional: Algorithmic cost modelling: COCOMO

I Constructive Cost Model (COCOMO) Bary Boehm et al.,
1981, . . .

I based on empirical studies
I LOC (lines of code) estimation

I e.g. function point analysis based on requirements:
complexity of functions and data

I Effort: in person months: PM = a ∗ LOCb

I a: type of software: 2.4 ≤ a ≤ 3.6
I b: cost drivers like platform difficulty, team experience, . . . :

1 ≤ b ≤ 1.5
I Project duration: TDEV = 3 ∗ PM0.33+0.2∗(b−1.01)

I Staffing: STAFF = PM/TDEV
I Brooks law: ”adding human resources to a late software

project makes it later”. (The Mythical Man Month Fred
Brooks 1975)

Hubert



Planning Agile Projects

I fixed general structure
→ quarterly cycle / weekly cycle practices in XP / sprints in

Scrum

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I time boxing
I fixed: release dates and iterations
I adjustable: scope

I Planning: Which user story in which iteration / release

Hubert

Hubert



Planning game

I Customer defines:
I user stories
I priorities (e.g. MoSCoW)

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story

I Result: Release / Iteration plan



Scrum/XP: User story estimation (based on ideal time)

I Estimation
I Estimate ideal time (e.g. person hours / week) to finish a

user story
I real time = ideal time * load factor (e.g. load factor = 2)
I Add user stories to an iteration based on real time and

priority

Hubert



Scrum/XP: User story estimation (based on ideal time)

I Monitoring
I New load factor : total iteration time / user story time

finished
→ What can be done in the next iteration

I Yesterdays weather
I Focus on few stories and finish them (time boxing)

Hubert



Contents

Implementing Associations

Interfaces

Project planning

Project



Course 02161 Exam Project

I Week 6 – 8: Report 1
I Requirements: Glossary, use case diagram, detailed use

cases (i.e. cucumber scenarios)
I Draft design: Class diagram + sequence diagrams

I Week 8 – 9: Report 2
I Peer review of report 1

I Week 8—13:
I Implementation
I Systematic tests and design by contract

I Week 13: Report 3, Source code
I 10 min demonstrations of the tests



Introduction to the project

I Problem:
I Design and implement a project planning and time

recording system
I UI required, but not a graphical UI; storage of data in

database or in a file is not required
I Deliver

I Sa 17.3: report 1: requirement specification and design
I Su 25.3: report 2: peer review of another groups report 1
I Week 13:

I report 3: systematic tests, design by contract
I Eclipse project: source code, tests, running program (ZIP

file that can be imported in Eclipse)
I demonstration in front of TA’s (participation mandatory;

does not contribute to final grade)

I More detail on CampusNet

Hubert

Hubert



Organisational issues

I Group size: 4
I Reports can be written in Danish or English
I Program written in Java with Eclipse and tests use

Cucumber and JUnit
I Each section, diagram, etc. needs to name the author who

made the section, diagram, etc.
I You can talk with other groups (or previous students

that have taken the course) on the assignment, but it is
not allowed to copy from others parts of the report or
the program.

I Any copying of text without naming the sources is viewed
as cheating

I In case of questions with the project description ask on
Piazza or send email to huba@dtu.dk

huba@dtu.dk


Week 6+7: Requirements and Design

Recommended design process

1 Create glossary, use cases, and domain model
2 Identify use case scenarios and their priority
3 Create a set of initial classes based on the domain model
→ initial design

3 Take one user story
a) Design the system by executing the user story in your head

→ e.g. using CRC cards (next week)

b) Extend the existing class diagram with classes, attributes,
and methods

c) Document the scenario using a sequence diagram

3 Repeat step 2 with the other use case scenarios

I Pareto principle: 20% of the work gives 80%
I Model does not have to be perfect: Guides implementation

Hubert



Week 8: Peer Review the models of your colleagues

Criteria to check for
I Correct notation (use case diagram, class diagram,

sequence diagrams)
I Consistency and completeness

I use case names in use case diagrams and detailed use
cases

I glossary explains terminolgoy used in detailed use cases
I sequence diagrams fit to the use case scenarios
I use case diagram describes the complete behaviour of the

system
I . . .

I Readability
I Do you understand the model?



Learning objectives of Week 6—8

I Learn to think abstractly about object-oriented programs
I Programming language independent

I Learn how to communicate requirements and design
I Requirements are read by the customer and the

programmers
I Talk with fellow programmers about design: class and

sequence diagrams
I I don’t expect you to create perfect models

I I expect your final implementation will differ from your model
→ Comparing your model with your final implementation: you

learn about the relationship between modelling and
programming



Week 9—13

Recommended implementation process

1 Choose a set of use case scenarios to implement
1 Select the use case scenario with the highest priority

a) Create the Cucumber test for it
b) Implement the use case scenario test-driven, creating

additional tests (Cucumber as well as JUnit) as necessary
I guided by your design
→ based on the classes, attributes, and methods of the model
→ implement only the classes, attributes, and methods needed

to implement the user story
→ Criteria: ideally 100% code coverage of the business logic

(i.e. application layer) based on the tests you have

3 Repeat step 2 with the use case scenario with the next
highest priority

Remember: priorities can change

Hubert



Grading

I The project will be graded as a whole
→ no separate grades for the models, report, and the

implementation
I Evaluation criteria

I In general: correct use and understanding of the
techniques introduced in the course

I Implementation: good architecture, understandable code
and easy to read (e.g. short methods, self documenting
method names and variable names, use of abstraction)

I Rather focus on a subset of the functionality with good code
quality than on having everything implemented but with bad
code quality

I ”Sufficient tests and quality of tests”


	Implementing Associations
	Interfaces
	Project planning
	Project

