
Software Engineering I (02161)
Week 5

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

Contents

User Stories

Class Diagrams I

Version control

User stories

I Requirements documentation for agile processes
I Simplifies use cases

I Contains a ”story” that the user tells about the use of the
system

I Focus on features
I ”As a customer, I want to book and plan a single flight from

Copenhagen to Paris”.
I functional + non-functional requirement

e.g. ”The search for a flight from Copenhagen to Paris shall
take less than 5 seconds”

I user story cards: index cards

Example of user stories

Each line is one user story:

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm

Example of user story cards

”Use the simplest tool possible”
→ index cards, post-its, . . .
I electronically: e.g. Trello (trello.com)

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

trello.com
http://www.agilemodeling.com/artifacts/userStory.htm

Use the simplest tool possible

Paul Downey 2009 https://www.flickr.com/photos/psd/3731275681/in/photostream/

https://www.flickr.com/photos/psd/3731275681/in/photostream/

MoSCoW method for prioritizing requirements

Must have: Minimal usable subset to achieve the Minimal
Vialble Product
Should have: Important requirments but not time critical,
i.e. not relevant for the current delivery time frame
Could have: Desireable features; e.g. can improve
usability
Won’t have/Would like: Features explicitly excluded for
the current delivery time frame

Wikipedia: https://en.wikipedia.org/wiki/MoSCoW_method

https://en.wikipedia.org/wiki/MoSCoW_method
Hubert

Reminder: Two different ways of building the system

Build the system by
layer/framework (traditional
approach)

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Build the system by
functionality (Agile approach)

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

→ User story driven: After
every implemented user
story a functional system

Reminder: Two different ways of building the system

Build the system by
layer/framework (traditional
approach)

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Build the system by
functionality (Agile approach)

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

→ User story driven: After
every implemented user
story a functional system

Hubert

Comparision: User Stories / Use Cases

User Case
I several abstract scenarios

with one goal
I only functional

requirements

Use Story
I one concrete

scenario/feature
I Alternative scenarios of a

use case are their own
user story

I functional + non-functional
requirement

e.g. ”The search for a
flight from Copenhagen
to Paris shall take less
than 5 seconds”

Comparision: User Stories / Use Cases

Use Case
I Advantage

I Overview over the
functionality of the
system

I Disadvantage
I Not so easy to do a use

case driven
development

I E.g. Login use case

Use Story
I Advantage

I Easy software
development process:
user story driven

I Disadvantage
I Overview over the

functionality is lost

Hubert

Hubert

Example: Login

Use case
name: Login
actor: User
main scenario

1 User logs in with
username and password

alternative scenario
1’ User logs in with NEMID

User stories
1 User logs in with

username and password
2 User logs in with NEMID

User Story Maps

Shrikant Vashishtha http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png

http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png
Hubert

Combining Use Cases and User Stories

1. Use cases:
I Gives an overview over the possible interactions
→ use case diagram

2. Derive user stories from use case scenarios (i.e. main-
and alternative)

3. Implement the system driven by user stories
I Note that different scenarios in use cases may have

different priorities
→ Not necessary to implement all scenarios of a use case

immediately

Contents

User Stories

Class Diagrams I

Version control

UML

I Unified Modelling Language (UML)
I Set of graphical notations: class diagrams, state machines,

sequence diagrams, activity diagrams, . . .
I Developed in the 90’s
I ISO standard

Hubert

Class Diagram

I Structure diagram of object oriented systems
I Possible level of details

Domain Modelling: typically low level of detail
...

Implementation: typically high level of detail
I Purpose:

I Documenting the domain
I Documenting the design of a system
I A language to talk about designs with other programmers

Hubert

Hubert

Hubert

Why a graphical notation?

public class Assembly
extends Component {

public double cost() { }
public void add(Component c) {}
private Collection<Component>

components;
}

public class CatalogueEntry {
private String name = "";
public String getName() {}
private long number;
public long getNumber() {}
private double cost;
public double getCost() {}
}

public abstract class Component {
public abstract double cost();
}

public class Part extends Component {
private CatalogueEntry entry;
public CatalogueEntry getEntry() {}
public double cost(){}
public Part(CatalogueEntry entry){}

Why a graphical notation?

{abstract}
Component

cost() : double

Part

cost() : double

CatalogueEntry

cost : double
name : String
number : long

Assembly

add(Component)
cost() : double

components
*

entry
1

Hubert

General correspondence between Classes and
Programs

«Stereotype»
PackageName::ClassName

{Some Propert ies}

+name1 : String = "abc"
name2 : OtherClass[*]
-name3 : int {read only}
#name4 : boolean

-f1(a1:int, a2:String[]) : float
+f2(x1:String,x2:boolean) : float
f4(a:double)
#f3(a:double) : String

package packagename
public class ClassName
{

private String name1 = "abc";
public List<OtherClass> name2 = new ArrayList<OtherClass>();
private int name3;
protected static boolean name4;

private static float f1(int a1, String[] a2) { ... }
public void f2(String x1, boolean x2) { ... }
abstract public void f4(a:double);
protected String f3(double a) { ... }

}

Hubert

Hubert

Hubert

Hubert

Java: Public attributes
Person

age : int {read only}

public class Person {
public int age;

}

for (Person p : persons) {
System.out.println("age = ",p.age);

}

Person

birthyear : int
/age : int { result = currentYear - birthyear }

public class Person {
public int birthyear;
public int age;

}

for (Person p : persons) {
System.out.println("age = ",p.age);

}

Hubert

Java: Private attributes and getter and setter
Person

age : int {read only}

public class Person {
private int age;
public int getAge() { return age; }

}

for (Person p : persons) {
System.out.println("age = ",p.getAge());

}

Person

birthyear : int
/age : int { result = currentYear - birthyear }

public class Person {
private int birthyear;
private int age;
public int getAge() { return ... ; }

}

for (Person p : persons) {
System.out.println("age = ",p.getAge());

}

Hubert

Class Diagram and Program Code

public class C {
private int a;
public int getA() { return a; }
public void setA(int a) { this.a = a; }

}

Hubert

Hubert

Class Diagram and Program Code

public class C {
private int a;
public int getA() { return a; }
public void setA(int a) { this.a = a; }

}

Class Diagram and Program Code

public class C {
private int a;
public int getA() { return a; }
public void setA(int a) { this.a = a; }

}

Generalization / Inheritance
I Programming languages like Java: Inheritance

abstract public class Medium { ... }
public class Book extends Medium { ... }
public class Cd extends Medium { ... }

I UML: Generalization / Specialization

Cd

int fine()
int maxBorrowInDays()

{abstract}
Medium

String signature
String title
String author
Calendar borrowDate
int fine()
int maxBorrowInDays()
boolean isOverdue()
boolean isBorrowed()

Book

int fine()
int maxBorrowInDays()

Hubert

Generalisation Example

Cd

int fine()
int maxBorrowInDays()

{abstract}
Medium

String signature
String title
String author
Calendar borrowDate
int fine()
int maxBorrowInDays()
boolean isOverdue()
boolean isBorrowed()

Book

int fine()
int maxBorrowInDays()

Liskov-Wing Substitution Principle
”If S is a subtype of T, then objects of type T in a program
may be replaced with objects of type S without altering any
of the desirable properties of that program (e.g.,
correctness).”

Appletree

Apple
Tree

Apple tree

Hubert

Associations between classes

I Unidirectional (association can be navigated in one
direction)

* employee 0..1
works for CompanyPerson

I Company has a field employees

public class Person
{

....
}

public class Company
{

private Set<Person> employees;
....

}

Hubert

Associations between classes

I Bidirectional (association can be navigated in both
directions)

* employee 0..1
works for CompanyPerson

public class Person
{

private Company company;
public getCompany() {
return company;

}
public setCompany(Company c) {
company = c;

}
....

}

public class Company
{

private Set<Person> employees;
....

}

I Bidirectional or no explicit navigability
I no explicit navigability ≡ no fields

* employee 0..1
works for CompanyPerson

Hubert

Attributes and Associations
public class Order {
private Date date;
private boolean isPrepaid = false;
private List<OrderLine> lineItems =
new ArrayList<OrderLine)();

...
}

Order

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
lineItems: OrderLine[*]

OrderLine
*1

lineItems

Hubert

Attributes and Associations
public class Order {
private Date date;
private boolean isPrepaid = false;
private List<OrderLine> lineItems =
new ArrayList<OrderLine)();

...
}

Order

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
lineItems: OrderLine[*]

OrderLine
*1

lineItems

Hubert

Hubert

Contents

User Stories

Class Diagrams I

Version control

What is version control?

Version Control
I Snapshots of project files (e.g. .java files)
I Project History
I Project Backup
I Concurrent work on project files
I Various systems: Git, Concurrent Versions System (CVS),

Subversion (SVN), Team Foundation Server (TFS) . . .

Hubert

Git
I Developed by Linus Torvalds for Linux
I Command line tools but also IDE support
I Commit: Snapshot of the project
I Commit: differences to previous snapshot + pointer to

snapshot
I Names of commits: SHA1 hashes of their contents

I 63d281344071f3ae1054bca63f1117f76a3d5751
I short 63d2813

I Branch: Two commits with same parent
I Merging branches: Merging the changes of two commits

into one

Hubert

Git: Distributed repository

I Local repository
I Remote repositories (zero,

one or more)
→ Stage + commit (new

local snapshot)
→ Push (local→ remote)
→ Pull (remote→ local)

Hubert

Starting with a project

1 Create a central repository:
http://repos.gbar.dtu.dk

http://repos.gbar.dtu.dk
Hubert

Hubert

Starting with a project
2 Open Git perspective in Eclipse

(Window::Perspective::Open Perspective::Other::Git)
3 Paste repository URL in ”Git Repositories” window

Hubert

Starting with a project

2 Create an initial project in Eclipse
3 Team::Share Project:

Hubert

Starting with a project

4 Stage changed files / commit (/ push)

Hubert

Starting with a project
5 Clone the repository from the central repository: Git

repository view

Hubert

Starting with a project

6 Import projects

Hubert

Working with Git: Centralized Workflow

Working with Git: Centralized Workflow

1 Pull the latest changes from the central repository
2 Work on a user story with commits to the local repository

as necessary (Team::Commit)
3 Once the user story is done (all tests are green) stage and

commit the result
4 Before pushing your commits first pull all commits done in

the meantime by others from the central repository
→ this will merge their commits with the local ones and create

a new merged commit

5 Fix any merge conflicts until all tests are green again
6 push your final commit to the central repository

Important: Never push a commit where the tests are failing
Continous Integration: Merge often with the master branch

Hubert

When Pushing commits fail

I Pushing fails if someone else as pushed his commits
before: No fast-forward merge possible

1 pull from central repository
I this automatically tries to merge the changes,

2 compile: fix possible compilation errors
3 run the tests: fix failing tests
4 commit and push again

Merge conflicts when pulling

1 Resolve conflicts (option: Merge tool)
2 Stage your changes
3 Commit and push changes

Hubert

Working with Git: Feature Branch Workflow

Working with Git: Feature Branch Workflow

I Create a branch for each feature, bug, group of work, etc.
I Only when the feature is done, merge to master branch
I Keeps master branch clean.
I Work on feature can be shared

Git resources

I Git tutorial
https://www.sbf5.com/˜cduan/technical/git/

I Git Book: https://git-scm.com/book/en/v2

https://www.sbf5.com/~cduan/technical/git/
https://git-scm.com/book/en/v2

Exam project

I Exam project
I Week 06: Project introduction and forming of project groups

(4); participation mandatory
I Week 13: Demonstration of the projects (each project 10

min.) This is not an oral examination!
I Group forming

I Group forming: mandantory participation in the lecture
next week

I Either you are personally present or someone can speak
for you

I If not, then there is no guarantee for participation in the
exam project

Hubert

	User Stories
	Class Diagrams I
	Version control

