Software Engineering | (02161)
Week 5

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

=
—
=

i

Contents

User Stories
Class Diagrams |

Version control

User stories

v

Requirements documentation for agile processes
» Simplifies use cases
Contains a "story” that the user tells about the use of the
system
Focus on features

» "As a customer, | want to book and plan a single flight from
Copenhagen to Paris”.

functional + non-functional requirement
e.g. "The search for a flight from Copenhagen to Paris shall
take less than 5 seconds”

user story cards: index cards

v

v

v

v

Example of user stories

Each line is one user story:

o Students can purchase monthly parking
passes online.

o Parking passes can be paid via credit
cards.

o Parking passes can be paid via PayPal.

o Professors can input student marks.

» Students can obtain their current seminar
schedule.

 Students can order official transcripts.

o Students can only enroll in seminars for
which they have prerequisites.

o Transcripts will be available online via a
standard browser.

Scott Ambler 2003-2014 http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm

Example of user story cards

"Use the simplest tool possible”
— index cards, post-its, ...
» electronically: e.g. Trello (trello.com)

S e

Scott Ambler 20032014 http://www.agilemodeling.com/artifacts/userStory.htm

trello.com
http://www.agilemodeling.com/artifacts/userStory.htm

Use the simplest tool possible

Paul Downey 2009 https://www.flickr.com/photos/psd/3731275681/in/photostream/

https://www.flickr.com/photos/psd/3731275681/in/photostream/

MoSCoW method for prioritizing requirements

Must have: Minimal usable subset to achieve the Minimal
Vialble Product

Should have: Important requirments but not time critical,
i.e. not relevant for the current delivery time frame

Could have: Desireable features; e.g. can improve
usability

Won’t have/Would like: Features explicitly excluded for
the current delivery time frame

Wikipedia: https://en.wikipedia.org/wiki/MoSCoW_method

https://en.wikipedia.org/wiki/MoSCoW_method
Hubert

Reminder: Two different ways of building the system

Build the system by
layer/framework (traditional
approach)

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Reminder: Two different ways of building the system

Build the system by

functionality (Agile approach
Build the system by g y (Agile app)

layer/framework (traditional
approach) Rresentation Layer

Presentation Layer Application Layer

Application Layer Domain Layer

Domain Layer Dathbage / Infrastructure Layer

Database / Infrastructure Layer

— User story driven: After
every implemented user
story a functional system

Hubert

Comparision: User Stories / Use Cases

Use Story

» one concrete
scenario/feature

User Case » Alternative scenarios of a
» several abstract scenarios use case are their own
with one goal user story
» only functional » functional + non-functional
requirements requirement

e.g. "The search for a
flight from Copenhagen
to Paris shall take less
than 5 seconds”

Comparision: User Stories / Use Cases

Use Case
» Advantage
» QOverview over the
functionality of the
system
» Disadvantage
» Not so easy to do a use
case driven

development
» E.g. Login use case

Use Story
» Advantage
» Easy software
development process:
user story driven
» Disadvantage

» Overview over the
functionality is lost

Hubert

Hubert

Example: Login

Use case
name: Login

actor: User User stories

main scenario 1 User logs in with
1 User logs in with username and password

username and password 2 User logs in with NEMID
alternative scenario
1’ User logs in with NEMID

User Story Maps [we oot feo

- [}
Organize Manage Manage Ma Use CA$¢
Email Email Calendar e \l/ Suslewe fevd
- [T [=)
Search File Compose Read Delete View Create Update View Create pdate Delete

Email Emails Email Email Email Calendar Appt Appt Appt Contact Contact Contact

Searclil] Move C:Zmen?‘ Open s== Delete View lisr " Create Update View = gﬁmh Upda—
i e basic email of appts basic contents Appt 1 contact

by Emails basic . contact
Keyword = email appt /location info K us(
st b~ N =y = R == ——— - i e - <«

Create™™ Send Open View Lo Create Accept/ 0

s o Morithly RTF appt Reject/T / Shorey

folders mail mail formats entative

e —— . p Reléase 1
Limit oendn [0 Emply c P Add i Delete

pen iew reate ropose pdate
Search HTMLe- HTMLe- DEfed poijy bl newtime gt |adaresl| (CCHioch
-qu ?:;e mail mail Las Format appt oy Infa
ield e s el LS e el R 2 b NG Ly e o e
Limit Open
Set Mandato
?:?rcn email eA:;gchm ry,lf()pﬁo
fields peioeiivg B oA Ha Release 2
Search Get View Get View Import /
attachm address address Attachm Contacts k
ents from WeeklyM itrom ents
i 5 contacts _For'mcrzs _ confacts £ oy B .
Search Send Add Export
sub Attachm Seorch Attachm Contacts
Calendar

folders ents ents
e i e e M e ~ Release 3

Shrikant Vashishtha http: //www.agilebuddha.com/wp-content/uploads/2013/02/IMAGO144.png

http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png
Hubert

Combining Use Cases and User Stories

1. Use cases:
» Gives an overview over the possible interactions
— use case diagram
2. Derive user stories from use case scenarios (i.e. main-
and alternative)
3. Implement the system driven by user stories
» Note that different scenarios in use cases may have
different priorities
— Not necessary to implement all scenarios of a use case
immediately

Contents

User Stories
Class Diagrams |

Version control

UML

I~

Unified Modelling Language (UML)

Set of graphical notations: class diagrams, state machines,
sequence diagrams, activity diagrams, ...

v

v

v

Developed in the 90’s
ISO standard

v

Hubert

Class Diagram

» Structure diagram of object oriented systems
» Possible level of details

Domain Modelling: typically low level of detail

Implementation: typically high level of detail
» Purpose:

» Documenting the domain
» Documenting the design of a system
» A language to talk about designs with other programmers

Hubert

Hubert

Hubert

Why a graphical notation?

public class Assembly
extends Component {

public double cost () { }

public void add(Component c) {}

private Collection<Component> public abstract class Component {
components; public abstract double cost();

} }

public class CatalogueEntry { public class Part extends Component

private String name = ""; private CatalogueEntry entry;

public String getName () {} public CatalogueEntry getEntry() {}

private long number; public double cost () {}

public long getNumber () {} public Part (CatalogueEntry entry) {}

private double cost;
public double getCost () {}

Why a graphical notation?

&-mros\k @*l“""'\
o D&S:S\A‘B I'S\'VV

‘(\\

D

{abstract}
Component

components
* ———

cost() : double

i

1
G

CatalogueEntry

cost : double
name : String imry
number : long

cost() : double
—

==
@Ssmbl})

add(Component)

cost() : double -
Ble
7\

Hubert

General correspondence between Classes and
Programs & inlevfoe™>

i R
«Stereolype»/ [é “AL\:‘&“-

L PackageName::ClassName
CDMSL‘“ . ~—=§Some Properties}

CHhame ring = "abc! 3
Vl$$‘&l /7 ngamezlotsliercglass[*?K mdkfe‘c\l\‘

;g d onl
ar;e?; int (rea on Y)&th
dafautl +

-fi(al:int, a2:Strin floale

+f2(x1:String,xZ:boolean) : float
'H'I'As ~5 f4(a:double)
#f3(a:double) : String

package packagename ucuMAZ?
public class ClassName

V¢UW£Z:Ci&NCk9GHJ
{

Sordaed 3

= new ArraylList<OtherClass>();

private String namel
public Llst<OtherC

protected static boolean name4;
— e e

private static float fl(int al, Stringl[] a2) { ... }
public votro—T2tString x1, boolean x2) { ... }
abstract public void f4 (a:double);

protected String f3(double a) { ... }

Hubert

Hubert

Hubert

Hubert

Java: Public attributes

Person
age : int {read only}

public class Person {
public int age;
}

for (Person p : persons) {

System.out.println("age = ",p.age);
}

Person

R birthyear : int
o(nv“'"(——>|/age :int { result = currentYear - birthyear }

-

public class Person { -
public int birthyear;
public int age;

}

for (Person p : persons) {

System.out.println("age = ",p.age);
}

Hubert

Java: Private attributes and getter and setter

Person
age : int {read only}

public class Person {
private int age;

public int getAge() { return age; }
}

for (Person p : persons) {
System.out.println("age = ",p.getAge());
} ‘ —~

Person

birthyear : int
/age : int { result = currentYear - birthyear }

public class Person {
private int birthyear;

pat e ;

public int getAge() { return ... ; }
}

for (Person p : persons) {
System.out.println("age = ",p.getAge());
1 e

Hubert

Class Diagram and Program Code

public class C {

private int a;
public int getA() { return a; }
public void setA(int a) { this.a = a;
C_

[T

—

}

Hubert

Hubert

Class Diagram and Program Code

public class C {

private int a;

public int getA() { return a; }

public void setA(int a) { this.a = a; }
}

C
-a: int
+setA(a: int)
+getA(): int

Class Diagram and Program Code

publi
pri

c class C {
vate int a;

public int getA()

public void setA(int a)

}

N

{ return a;
{ this.a

yd

e

\C
-a:

N

+s (a:

getA(): in

at)

ajy

}

+a:

int

Generalization / Inheritance
» Programming languages like Java: Inheritance

abstract public class Medium { ... }
public class Book extends Medium { ... }
public class Cd extends Medium { ... }

» UML: Generalization / Specialization [A \
{abstract} T

Medium
String signature

String title
String author

Calendar borrowDate % \
int fine()
int maxBorrowInDays()

boolean isOverdue()

boolean isBorrowed() m
<

| —

Book Cd
int fine() int fine()

int maxBorrowInDays() int maxBorrowInDays() . % '

Hubert

Generalisation Example

{abstract}
Medium

String signature

String title
String author

Calendar borrowDate

int fine()

int maxBorrowInDays()

boolean isOverdue()

boolean isBorrowed()

I

Book

int fine()
int maxBorrowInDays()

Liskov-Wing Substitution Principle
”If S is a subtype of T, then objects of type T in a program
may be replaced with objects of type S without altering any
of the desirable properties of that program (e.g.,

correctness).”

Cd

int fine()

int maxBorrowInDays()

Appletree

Tree

Apple

é
%,

(‘Jn_lebo.}\':u
Apple tree

v

Hubert

Associations between classes

CRSVED) e o Kb

» Unidirectional (association can be navigated in one

direction) Cowpc.u/
<V 74
works forp» Y
Person 7 employee 017 Company
1«
Y'O\o. awa c——
» Company has a field employees
public class Person %ublic class Company

{

private Set<Person> emgloyega;
} e

}

Hubert

Associations between classes

» Bidirectional (association can be navigated in both
directions)

works forﬂ)
Person ? employee : 07| Company
public class Person (WY w.uﬁh,é\'o\l-b

{ ~

private Company company;

public getCompanyT) [public class\Company

return company; { T D
} private Set<Person> employees;
ublic setCompany (Company c) {

company = C; }

» Bidirectional or no explicit navigability
» no explicit navigability = no fields

works for»
Person . _employee 0.1 Company

—_— —

Hubert

Attributes and Associations

’ Order ' public class Order {

private Date date;

+ dateReceived: Date((0..1] private boolean isPrepaid = false;
+ isPrepaid: Boolean private List<OrderLine> lineltems =
+ lineltems: OrderLi rdered} new ArrayList <OrderLine) () ;

/ }

<
<0 1 ’ "% + isPrepaid
Date Order Boolean
+ dateReceived i)

lineltems
>A- {ordered}

OrderLine

Hubert

Attributes and Associations

public class Order {
Order N
private Date date;
+ dateReceived: Date [0.1] private boolean isPrepaid = false;
+ isPrepaid: Boolean [1] private List<OrderLine> lineltems =
+ lineltems: OrderLine [*] {ordered} new ArrayList <OrderLine) () ;
}
Prepaid
Date Ot 3 Order il Boolean
+ dateReceived 1
1
lineltems
% ||, {ordered}
OrderLine
Order 1
dateReceived: Date[0..1] Iin;{tems OrderLine
isPrepaid: Boolean[1] 1 - —
) 4

Hubert

Hubert

Contents

User Stories
Class Diagrams |

Version control

What is version control?

Version Control
» Snapshots of project files (e.g. .java files)

v

Project History
Project Backup
Concurrent work on project files

Various systems: \Cj—ﬂConcurrent Versions System (CVS),
Subversion (SVN), Team Foundation Server (TFS) ...

v

v

v

Hubert

Git

Developed by Linus Torvalds for Linux

Command line tools but also IDE support

Commit: Snapshot of the project

Commit: differences to previous snapshot + pointer to
snapshot

Names of commits: SHA1 hashes of their contents

» 63d281344071f3ae1054bca63f1117{76a3d5751

» short 63d2813 é°<:~)‘ remeole

Project: library0 ?_sclutio%;?q’e(/ Lﬁc‘-‘
Id Message Author

0e528b4 ~Y Ngrigin/mastery| HEAD | Changed title of book huba

vV vV v v

v

939ccd2~ Ecked in class Tiles Hubert Baumeister
d6380a2~»0 Merge branch 'master' of https://repos.gbar.dtu.dk/ctHubert Baumeister
1cSo6ef =m0 Changed book fine to 40 Hubert Baumeister
EQQB‘IBZ"‘_’C' changed bock fine to 35 huba

ce7f5d0 3‘ Criginal Version Hubert Baumeister

» Branch: Two commits with same parent

» Merging branches: Merging the changes of two commits
into one

Hubert

Git: Distributed repository

A

Lo-c/d wak\,g s
c < v
» Local repository fﬁ:,—‘gbéw 3
» Remote repositories (zero, l’ P~ I‘\ CS
one or more) v /
| o
— Stage + commit (new e /
local snapshot) \'/ 4
L

— Push (local — remote)

— Pull (remote — local) ‘%1/ — \k’c,,

slaa_._' Cowu- f‘d‘

Hubert

Starting with a project

1 Create a central repository:
http://repos.gbar.dtu.dk

Field: Value

Rename repository:
project_repo

Options Anonymous read-only access (active):

https://repos.gbar.dtu.dk/git/huba/project_repo.git é
Read-only access: git://repos.gbar.dtu.dk

Checkout J' ect_repo.git
Riee Ote that you need to add a user to the repository before you check it

out!

Username Actions
Current users: [Change password] [Delete]

[Add new user |

Update Repository

Back

http://repos.gbar.dtu.dk
Hubert

Hubert

Starting with a project
2 Open Git perspective in Eclipse
(Window::Perspective::Open Perspective::Other::Git)
3 Paste repository URL in "Git Repositories” window

@ @ Clone Git Repository
Source Git Repository GIT |
Enter the location of the source repository. *——]7 4 ‘
Location
URI: https://repos.gbar.dtu.dk/git/huba/project_repo.git Local File...
Host: repos.gbar.dtu.dk

Repository path: /git/huba/project_repo.git
Connection

Protocol: | https | T}

Port:

Authentication

User: someUser

Password: LXTYITTYY

Store in Secure Stosg

Hubert

Starting with a project

2 Create an initial project in Eclipse
3 Team::Share Project:

Configure Git Repository

Configure Git Repository

Select an existing repository or create a new one =

|| Use or create repository in parent folder of project

Repository: project_repo - /Users/huba/git/project_repo/.git ' Create...
Working tree: /Users/huba/git/project_repo
Path within repository:

Browse...
Project Current Location Target Location
=% exam_project /Users/t p/eclip: 2/exam_... [Users/hul

git/project._ _project

Hubert

Starting with a project

4 Stage changed files / commit (/ push)

L'_j Problems @ Javadoc @ Declaration]&Git Staging &2 =l
Q ng <§> 8- rE‘EI -

0 > project_repo [NO-HEAD]

Unstaged Changes (4 Commit Message & = =

Initial version
——————

Staged Changes (0)

Author: | Hubgft Baumeistgr <huba@dtu.dk>

Committer: Hublert Baurpefster <huba@dtu.dk>

—
%’ Commit and Push?| | <]

Hubert

Starting with a project

5 Clone the repository from the central repository: Git
repository view

[JoX) Clone Git Repository
Source Git Repository G|T
Enter the location of the source repository. ==y
Location
URI: L gbar.dtu.dk/gi ject_repo.git | | Local File...
Host: repos.gbar.dtu.dk

Repository path: /git/huba/project_repo.git
Connection

Protocol: _https B

Port:

Authentication

User: 'someUser
Password: csessene
Store in Secure Stos

@ [Next > JEICNT

Hubert

Starting with a project

6 Import projects

E Git Repositories g3 = % % ﬁ#‘ Q.‘é

v 8 project_repo [master] - /Users/huba/git/project_repo/.git
b 25 Branches

%Tags

P (= References

» [Remot
@Hﬂblusers/huba/git/project,repo

Flogit —
P & exam_project
*—— - gr Add to Index

(

) |
X Delete ®
1 Import Projects...
Show In XEW »
Copy Path to Clipboard &C
Paste Repository Path or URI 3V

Hubert

Working with Git: Centralized Workflow

Working with Git: Centralized Workflow

1 Pull the latest changes from the central repository

2 Work on a user story with commits to the local repository
as necessary (Team::Commit)

3 Once the user story is done (all tests are green) stage and
commit the result

4 Before pushing your commits first pull all commits done in
the meantime by others from the central repository

— this will merge their commits with the local ones and create
a new merged commit

5 Fix any merge conflicts until all tests are green again

6 push your final commit to the central repository
Important: Never push a commit where the tests are failing
Continous Integration: Merge often with the master branch

Hubert

When Pushing commits fail

» Pushing fails if someone else as pushed his commits
before: No fast-forward merge possible

1 pull from central repository
» this automatically tries to merge the changes,
2 compile: fix possible compilation errors
3 run the tests: fix failing tests
4 commit and push again

Merge conflicts when pulling

= nulalyuo
V@IibraryOLsolution [libraryQ7_solution|Conflicts mas
V 4 src
¥ (5§ dtu.library.app
P [J} Address.java
| 2 @Book.java —_ Wuu 7‘acw o W\MAA {'0"{

> D} BorrowException.java

etFine() {

1 Resolve conflicts (option: Merge tool)
2 Stage your changes
3 Commit and push changes

Hubert

Working with Git: Feature Branch Workflow

Working with Git: Feature Branch Workflow

Create a branch for each feature, bug, group of work, etc.
Only when the feature is done, merge to master branch
Keeps master branch clean.

Work on feature can be shared

v

v

v

v

Git resources

» Git tutorial
https://www.sbf5.com/~cduan/technical/git/

» Git Book: https://git—-scm.com/book/en/v2

https://www.sbf5.com/~cduan/technical/git/
https://git-scm.com/book/en/v2

Exam project

» Exam project

» Week 06: Project introduction and forming of project groups
(4); participation mandatory

» Week 13: Demonstration of the projects (each project 10
min.) This is not an oral examination!

» Group forming
» Group forming: mandantory participation in the lecture
next week
» Either you are personally present or someone can speak
for you
» If not, then there is no guarantee for participation in the
exam project

Hubert

	User Stories
	Class Diagrams I
	Version control

