
Software Engineering I (02161)
Week 4

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

Contents

Requirements

Activity Diagrams

Domain model

Use Cases

Requirements Engineering Process

Basic Activities in Software Development

I Understand and document what kind of the software the
customer wants
→ Requirements Analysis / Engineering

I Determine how the software is to be built
→ Design

I Build the software
→ Implementation

I Validate that the software solves the customers problem
→ Testing

Requirements Analysis

Requirements Analysis
Understand and document the kind of software the customer
wants

I external behaviour and not how it is realised
I Techniques used

I Interviews
I Business Processes
I Domain model
I Use Cases / User Stories: document functionality

Types of Requirements

I Functional Requirements
I E.g. the user should be able to plan and book a trip

I Non-functional Requirements
I All requirements that are not functional
I E.g.

I Where should the software run?
I What kind of UI the user prefers?
I What is the response time?
I . . .

Who writes requirements?

I The customer:
I User requirements

I The contractor together with the customer
I System requirements

I The requirements for the software development team how to
build the system

→ more detailed than user requirements
→ basis for a contract between customer and contractor

Travel Agency Example: User Requirements

The travel agency TravelGood comes to you as software
developers with the following proposal for a software project:

I Problem description / user requirements
”TravelGood wants to offer a trip-planning and booking
application to its customers. The application should allow
the customer to plan trips consisting of flights and hotels.
First the customer should be able to assemble the trip,
before he then books all the flights and hotels in on step.
The user should be able to plan several trips. Furthermore
it should be possible to cancel already booked trips. The
application should be a user friendly Web application and
should use the latest Java technology running on WildFly
10”

→ Not enough: Text needs to be analysed and system
requirements extracted

Travel Agency

I Functional Requirements
I ”plan a trip, book a trip, save a planned trip for later

booking, . . . ”
I Non-functional requirements

I ”System should be a Web application accessible from all
operating systems and most of the Web browsers”

I ”It must be possible to deploy the Web application in
WildFly 10”

I ”It should use Java 9”
I ”The system should be user friendly”

Non exclusive checklist of non-functional requirements

Ian Sommerville, Software Engineering - 9

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Possible measures

Ian Sommerville, Software Engineering - 9

Contents

Requirements

Activity Diagrams

Domain model

Use Cases

Requirements Engineering Process

Activity Diagram: Business Processes

Ian Sommerville, Software Engineering – 9, 2010

I Describe the context of the system
I Helps find the requirements of a system

I What does the user do?
I How does he interact with what kind of systems?
I Ideally, software systems need to fit in into existing

business processes

Activity Diagram Example Workflow

Activity Diagram Example Operation

UML Activity Diagrams

I Focus is on
I Activities
I Control flow
I Data flow

I Good for showing parallel/concurrent control flow
I Purpose

I Model business processes
I Model workflows
I Model single operations

I Literature: UML Distilled by Martin Fowler

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Swimlanes / Partitions

I Swimlanes show who is performing an activity

Objectflow example

Data flow and Control flow

I Data flow and control flow are shown:

Order Make
Payment

Receive
Invoice

I Control flow can be omitted if implied by the data flow:

Order Make
Payment

Receive
Invoice

Use of Activity Diagrams

I Focus on concurrent/parallel execution of activities
I Requirements phase

I To model business processes / workflows to be automated
I Design phase

I Show the semantics of one operation
I Close to a graphic programming language

Contents

Requirements

Activity Diagrams

Domain model

Use Cases

Requirements Engineering Process

Domain model

I Capture customer’s knowledge for system builders
→ ubiquitous language = speak the same language

I Define the terminology
→ Glossary

I Define Relationships between concepts
→ Class diagram
→ Related to knowledge representation and ontology

I Make business processes visible

Glossary

glossary (plural glossaries)
”1. (lexicography) A list of terms in a particular domain of
knowledge with the definitions for those terms.” (Wikitionary)

I List of terms with explanations
I Terms can be nouns (e.g. those mentioned in a problem

description) but also verbs or adjectives e.t.c.
I Warning

I Don’t try to capture all possible knowledge
I But don’t forget important concepts

I Glossaries develop over time

Example

Part of a glossary for a library application
Book

I A book is a is a conceptual entity in a library. A book is
defined by its title, the name of his authors, the publisher
and the edition. A library can have several copies of the
same book.

Copy
I A copy is a physical copy of a particular book. For

example, the library has three copies of the book ”Using
UML” by Perdiate Stevens. . . .

. . .

Terms and their relations

I Class diagrams
I Usually

I Classes (for nouns)
I Associations: for static relationships
I Generalizations
I Avoid use of attributes
I Avoid use of operations

Domain model (terms and their relations)

Contents

Requirements

Activity Diagrams

Domain model

Use Cases
Use Case Diagram
Detailed Use Cases

Requirements Engineering Process

Definition Use Case
I Use cases discover and document functional requirements

→ Naming convention: ”Do something” (= functionality)

Travel Agency

Customer

Plan Trip

I Set of interactions: Actor ↔ System
I Anything the actor does with the system
I System responses
I Effects visible/important to the customer
I Common goal

I Two ways of documenting
I Use case diagram
I Detailed use case

Use Case Diagram

Purpose: Overview

TravelAgency

Manage Hotels

Manage Flights

Manage TripUser

Cancel Trip

Book Trip

Plan Trip

Administrator

Levels of use case diagrams

a) Business use cases (kite level use cases (from Alistair
Cockburn))

b) System use cases / sea level use cases (fish level use
cases (from Alistair Cockburn)

UML Destilled, Martin Fowler

Example Business Use Cases

TravelAgency

Manage Hotels

Manage Flights

Manage TripUser

Cancel Trip

Book Trip

Plan Trip

Administrator

Example System Use Cases

Plan trip use cases

Delete Flight from Trip

Delete Hotel from Trip

List Trip

Add Flight to Trip

Add Hotel to Trip

TravelAgency

User

Search Available Hotels

Search Avaialbe Flights

Manage trip use cases

Save Trip

Book Trip

User
Cancel Trip

Delete Trip

Edit Trip

TravelAgency

Relations between use cases
extends: used to extract
variant behaviour

includes: used to factor
common behaviour of use
cases

UML User Guide, Grady Booch et al

Use extend and include sparingly

Don’ts of Use case diagrams
I Use case diagrams don’t explain how a use case works,

this is part of the detailed use case description

Select Trip

Delete Trip

Login
Travel Agency

User

Delete Trip

Travel Agency

User

Delete Selected TripSelect Trip

Travel Agency

Login

User

«include»

«include»

Detailed Use Case: search available flights

name: search available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and

the arrival and departure dates
2. The system provides a list of available flights with prices

and booking number
alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Detailed use case: Cucumber feature

Feature: <Name of the use case/feature>
Description: <Short description>
Actor: <One or more actors>

Main scenario
Scenario: <Name>

Given <establishing a starting state>
And <possible precondition> # optional
When <an action occurs>
Then <then there is a resulting state>
And <possible postcondition> # optional

Alternative scenarios
Scenario: <Name>
...

Detailed use case search available flights

Feature: Search available flights one way
Description: the user checks for available flights one way
Actors: User

Main scenario
Scenario: Search for available flight

Given the user provides information about the city
the user starts his travel

And about the city the user travels to
And about the departure date
When the user searches for flights
Then the system provides a list of available flights

with prices and booking number

Fail scenario one
Scenario: No flights when the departure date

has already past
Given the user provides information about the city

the user starts his travel
And about the city the user travels to
And about the departure date, which is in the past
When the user searches for flights
Then the system provides an error message that

the departure date needs to be in the future

More scenarios for other error conditions

Step definitions

@Given("ˆthe user provides information about the city the user starts his travel$")
public void theUserProvidesInformationAboutTheCityTheUserStartsHisTravel() throws Exception {

from = "Copenhagen";
}

@Given("ˆabout the city the user travels to$")
public void aboutTheCityTheUserTravelsTo() throws Exception {

to = "Paris";
}

@Given("ˆabout the departure date$")
public void aboutTheDepartureDate() throws Exception {

departureDate = new GregorianCalendar(2018,1,10);
}

@When("ˆthe user searches for flights$")
public void theUserSearchesForFlights() throws Exception {

result = travelAgency.searchFlights(from,to,departureDate);
}

@Then("ˆthe system provides a list of available flights with prices and booking number$")
public void theSystemProvidesAListOfAvailableFlightsWithPricesAndBookingNumber() throws Exception {

assertEquals(3,result.size());
/* Check that the correct flight information is returned. */

}

Alternate use of Cucumber

Feature: Search available flights
Description: the user checks for available flights
Actors: User

Main scenario
Scenario: Search for available flights

Given the user wants to fly from "Copenhagen"
to "Paris" on "10.2.2018"

When the user searches for flights
Then these flights are returned
CPH	CDG	10.2.2018	LH 1023	8:30	1:30	1000	BK01
CPH	CDG	10.2.2018	AF 4201	9:00	1:30	2000	BK02
CPH	CDG	10.2.2018	SAS 0022	13:00	1:30	1500	BK03

Fail scenario one
Scenario: No flights when the departure date

has already past
Given that today is "1.2.2018"
Given the user wants to fly from "Copenhagen"

to "Paris" on "31.1.2018"
When the user searches for flights
Then the system provides the error message

that the departure date needs to be in the future

More scenarios for the other fail scenarios

Step definitions

@Given("ˆthe user wants to fly from \"([ˆ\"]*)\" to \"([ˆ\"]*)\"
on \"([ˆ\"]*)\"$")

public void theUserWantsToFlyFromToOn(String from, String to,
String date) throws Exception {

this.from = from;
this.to = to;
this.date = convertDateFromString(date);

}

@When("ˆthe user searches for flights$")
public void theUserSearchesForFlights() throws Exception {

result = travelAgency.searchFlights(from,to,date);
}

@Then("ˆthese flights are returned$")
public void theseFlightsAreReturned(List<Map<String,String>> flights) throws Exception {

assertEquals(flights.size(),result.size());
/* check that the values of result are correct reg. flights */

}

Detailed use case cancel trip

Feature: Cancel Trip
Description: the user cancels a trip that was booked
Actors: User

Scenario: cancel trip
Given that the user has booked a trip
And that the earliest date of a booking

belonging to that trip has not yet passed
When the user cancels the trip
Then the system shows the user the cost of cancellation
When the user confirms cancellation
Then the trip is cancled

Scenario: started trip cannot be cancelled
Given that the user has booked a trip
And that the earliest date of a booking

belonging to that trip has has passed
When the user cancels the trip
Then the system provides an error message

that the trip can’t be cancelled
because it has already started

And the trip is not cancled

Pre-condition

Feature: Delete trip
Description: the user deletes a trip
Actors: User

Scenario: The user deletes a trip
Given that the user

has planned a trip
When the user logs-in
And the user deletes the trip
Then the trip is deleted

I Issue: The user has to
login each time

Scenario: The user deletes a trip
Given that the user

has planned a trip
And that the user is logged-in
When the user deletes the trip
Then the trip is deleted

I Now the user has to be
logged in, but does not
have to login each time

Pre-condition

Feature: Delete trip
Description: the user deletes a trip
Actors: User

Scenario: The user deletes a trip
Given that the user

has planned a trip
When the user logs-in
And the user deletes the trip
Then the trip is deleted

I Issue: The user has to
login each time

Scenario: The user deletes a trip
Given that the user

has planned a trip
And that the user is logged-in
When the user deletes the trip
Then the trip is deleted

I Now the user has to be
logged in, but does not
have to login each time

Pre-condition

Feature: Delete trip
Description: the user deletes a trip
Actors: User

Scenario: The user deletes a trip
Given that the user

has planned a trip
When the user logs-in
And the user deletes the trip
Then the trip is deleted

I Issue: The user has to
login each time

Scenario: The user deletes a trip
Given that the user

has planned a trip
And that the user is logged-in
When the user deletes the trip
Then the trip is deleted

I Now the user has to be
logged in, but does not
have to login each time

Contents

Requirements

Activity Diagrams

Domain model

Use Cases

Requirements Engineering Process

Requirements engineering process

p-type/e-type projects:
I impossible to get requirements right the first time

Ian Sommerville, Software Engineering - 9

Requirements engineering process: Agile Methods

I Pareto principle 80/20
I Feedback: requirements change

Scott Ambler 2003–2014

http://www.agilemodeling.com/artifacts/userStory.htm

1. Business Processes

2. Domain model

3. Use case diagram

4. Take most important
use case scenario

5. Detail use case / write
Cucumber scenario

6. Implement

7. Feedback: Adapt
requirements

8. Repeat from step 4
I Lookout for Minimal Viable Product

http://www.agilemodeling.com/artifacts/userStory.htm

	Requirements
	Activity Diagrams
	Domain model
	Use Cases
	Use Case Diagram
	Detailed Use Cases

	Requirements Engineering Process

