Software Engineering | (02161)
Week 4

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

=
—
=

i

Contents

Requirements
Activity Diagrams
Domain model
Use Cases

Requirements Engineering Process

Basic Activities in Software Development

Understand and document what kind of the software the
customer wants

— Requirements Analysis / Engineering
Determine how the software is to be built
— Design
Build the software
— Implementation
Validate that the software solves the customers problem
— Testing

v

v

v

v

Requirements Analysis

Requirements Analysis

Understand and document the kind of software the customer
wants

» external behaviour and not how it is realised
» Techniques used
» Interviews
Business Processes
Domain model
Use Cases / User Stories: document functionality

vV vy

Types of Requirements

» Functional Requirements
» E.g. the user should be able to plan and book a trip
» Non-functional Requirements

» All requirements that are not functional
» E.g.

» Where should the software run?
What kind of Ul the user prefers?
What is the response time?

vYvyy

Who writes requirements?

» The customer:
» User requirements

» The contractor together with the customer
» System requirements

» The requirements for the software development team how to
build the system
— more detailed than user requirements
— basis for a contract between customer and contractor

Travel Agency Example: User Requirements

The travel agency TravelGood comes to you as software
developers with the following proposal for a software project:
» Problem description / user requirements

“TravelGood wants to offer a trip-planning and booking
application to its customers. The application should allow
the customer to plan trips consisting of flights and hotels.
First the customer should be able to assemble the trip,
before he then books all the flights and hotels in on step.
The user should be able to plan several trips. Furthermore
it should be possible to cancel already booked trips. The
application should be a user friendly Web application and
should use the latest Java technology running on WildFly
10”

— Not enough: Text needs to be analysed and system
requirements extracted

Travel Agency

» Functional Requirements

» “plan a trip, book a trip, save a planned trip for later
booking, ...”

» Non-functional requirements

» "System should be a Web application accessible from all
operating systems and most of the Web browsers”

» "It must be possible to deploy the Web application in
WildFly 10”

» "It should use Java 9”

» "The system should be user friendly”

Non exclusive checklist of non-functional requirements
Non-Functional
| Requirements

Product Organizational External
Requirements Requirements Requirements

Efficiency Dependability Security Regulatory Ethical
i Requi i Requirements Requirements

Operational | Develop | Legislative
q

q

q

Usability
Requirements
—
[[P

Performance Space Accounting Safety/Security
Requirements Requirements Requi Requi

lan Sommerville, Software Engineering - 9

q

Envirc
q

Characteristics of good requirements

» Testability
— manual/automatic acceptance tests
» Measurable

» Not measurable: The system should be easy to use by
medical staff and should be organised in such a way that
user errors are minimised

Characteristics of good requirements

» Testability
— manual/automatic acceptance tests
» Measurable

» Not measurable: The system should be easy to use by
medical staff and should be organised in such a way that
user errors are minimised

» Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Possible measures

Property Measure

Speed Processed transactions/second
User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips
Ease of use Training time

Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

lan Sommerville, Software Engineering - 9

Contents

Requirements
Activity Diagrams
Domain model
Use Cases

Requirements Engineering Process

Activity Diagram: Business Processes

!

Confirm
Detention [Not Available] Transfer to
Decision Police Station
| Find Secure
Place [Available] s lr:'t;ré"
Transfer to paalcare
Inform Secure

R
L~ Ppatient of [Dangerous] Hospital Inform Next
| Rights of Kin @
Record -
Detention Admit to o
Decision [Not Hospital Register

T Dangerous]

|

asystems asystem» «system»
S Admissions MHC-PMS
System

lan Sommerville, Software Engineering — 9, 2010

» Describe the context of the system
» Helps find the requirements of a system
» What does the user do?
» How does he interact with what kind of systems?
» |deally, software systems need to fit in into existing
business processes

Activity Diagram Example Workflow

Customer Telesales Accounting Warehouse

Request return
| (Get return number

Cowm
Item
[returned]

Receive item

Restock item

/

Credit account

Item
[available]

Activity Diagram Example Operation

else

[slope = line.slope] fe——
return Point(0,0) ;%(@

@ = (line.delta - delta) / (slope - Iina.slupa})

G := {slope *

®) + dalla)

/

return Paint(x.y)

UML Activity Diagrams

Focus is on

» Activities

» Control flow

» Data flow
Good for showing parallel/concurrent control flow
Purpose

» Model business processes
» Model workflows
» Model single operations

Literature: UML Distilled by Martin Fowler

v

v

v

v

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

Receive
Order

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Swimlanes / Partitions

» Swimlanes show who is performing an activity

Fulfillment Customer Service Finance

Receive
Order

Send
Invoice

Receive ‘
Payment

Deliver
Order

Close
Order

Objectflow example

Customer

Request product

P Process order

Warehouse

abject flow

: Order
lin progress]

Pull materials
Ship order

illed].

\
abject

Receive order

Bill customer

bject flow.

Data flow and Control flow

» Data flow and control flow are shown:

Receive

Invoice /)

Order

Make

\ Payment

» Control flow can be omitted if implied by the data flow:

Receive
Invoice

Order

Make
Payment

Use of Activity Diagrams

» Focus on concurrent/parallel execution of activities
» Requirements phase
» To model business processes / workflows to be automated
» Design phase
» Show the semantics of one operation
» Close to a graphic programming language

Contents

Requirements
Activity Diagrams
Domain model
Use Cases

Requirements Engineering Process

Domain model

v

Capture customer’s knowledge for system builders
— ubiquitous language = speak the same language
Define the terminology
— Glossary
Define Relationships between concepts
— Class diagram
— Related to knowledge representation and ontology

Make business processes visible

v

v

v

Glossary

glossary (plural glossaries)
1. (lexicography) A list of terms in a particular domain of
knowledge with the definitions for those terms.” (Wikitionary)

» List of terms with explanations
» Terms can be nouns (e.g. those mentioned in a problem
description) but also verbs or adjectives e.t.c.

» Warning
» Don’t try to capture all possible knowledge
» But don’t forget important concepts

» Glossaries develop over time

Example

Part of a glossary for a library application
Book

» A book is a is a conceptual entity in a library. A book is
defined by its title, the name of his authors, the publisher
and the edition. A library can have several copies of the
same book.

Copy

» A copy is a physical copy of a particular book. For
example, the library has three copies of the book "Using
UML’ by Perdiate Stevens. ...

Terms and their relations

» Class diagrams

» Usually

Classes (for nouns)

Associations: for static relationships
Generalizations

Avoid use of attributes

Avoid use of operations

vV vy vy VvYyy

Domain model (terms and their relations)

LbraryMember

£

Publisher
1

borrows &
MemberOfStaff —5—7 0.5

Contents

Requirements
Activity Diagrams
Domain model

Use Cases
Use Case Diagram
Detailed Use Cases

Requirements Engineering Process

Definition Use Case

» Use cases discover and document functional requirements
— Naming convention: "Do something” (= functionality)

Travel Agency

T

Customer

» Set of interactions: Actor <> System
» Anything the actor does with the system
» System responses
» Effects visible/important to the customer
» Common goal

» Two ways of documenting

» Use case diagram
» Detailed use case

Use Case Diagram

Purpose: Overview

TravelAgency

ii Book Trip

User

Manage Flight: \>ﬁ
/

Manage Hotels

Administrator

Manage Trip

I

Levels of use case diagrams

a) Business use cases (kite level use cases (from Alistair
Cockburn))

b) System use cases / sea level use cases (fish level use
cases (from Alistair Cockburn)

UML Destilled, Martin Fowler

Example Business Use Cases

TravelAgency

Manage Flight: \>ﬁ
/

Manage Hotels,

Book Trip L
Administrator
User Manage Trip

D00 6
i

Example System Use Cases

Plan trip use cases

TravelAgency

Search Avaialbe Flight:

Add Flight to Trip

< Search Available Hotel

User

Add Hotel to Trip

Delete Hotel from Trip

Delete Flight from Trip

Manage trip use cases

<

User

TravelAgency

Delete Trip

Book Trip

Relations between use cases
includes: used to factor
common behaviour of use
cases

extend relationship

extends: used to extract
variant behaviour

wexlends
(set priority)

Place order
Place

rush order

extension points
set priority e-

extension points

.

include relationship Yoo -
i o “include» \
' \

Track Check password
order |

“d_

wincludes

\

Validate

user
Retinal SCED

UML User Guide, Grady Booch et al

Use extend and include sparingly

Don’ts of Use case diagrams

» Use case diagrams don’t explain how a use case works,
this is part of the detailed use case description

Travel Agency
i 77—— Delete Selected Trip

User

Travel Agency
<<inc|u/d_e»’
E— Delete Trip <::<i.;clude»

User

Travel Agency
ij E— Delete Trip

User

Detailed Use Case: search available flights

name: search available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and
the arrival and departure dates
2. The system provides a list of available flights with prices
and booking number

alternative scenario:
1a. The input data is not correct (see below)
2. The system notifies the user of that fact and terminates and
starts the use case from the beginning
2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Detailed use case: Cucumber feature

Feature: <Name of the use case/feature>
Description: <Short description>
Actor: <One or more actors>

Main scenario

Scenario: <Name>
Given <establishing a starting state>
And <possible precondition> # optional
When <an action occurs>
Then <then there is a resulting state>
And <possible postcondition> # optional

Alternative scenarios
Scenario: <Name>

Detailed use case search available flights

Feature: Search available flights one way
Description: the user checks for available flights one way
Actors: User

Main scenario
Scenario: Search for available flight
Given the user provides information about the city
the user starts his travel
And about the city the user travels to
And about the departure date
When the user searches for flights
Then the system provides a list of available flights
with prices and booking number

Fail scenario one
Scenario: No flights when the departure date
has already past
Given the user provides information about the city
the user starts his travel
And about the city the user travels to
And about the departure date, which is in the past
When the user searches for flights
Then the system provides an error message that
the departure date needs to be in the future

More scenarios for other error conditions

Step definitions

@Given (" "the user provides information about the city the user starts
public void theUserProvidesInformationAboutTheCityTheUserStartsHisTrav
from = "Copenhagen";

}

@Given (""about the city the user travels to$")
public void aboutTheCityTheUserTravelsTo() throws Exception {
to = "Paris";

}

@Given (""about the departure date$")
public void aboutTheDepartureDate () throws Exception {
departureDate = new GregorianCalendar (2018,1,10);

}

@When (" “the user searches for flightss$")
public void theUserSearchesForFlights () throws Exception ({
result = travelAgency.searchFlights (from,to,departureDate);

}

@Then (""the system provides a list of available flights with prices an
public void theSystemProvidesAListOfAvailableFlightsWithPricesAndBooki
assertEquals (3, result.size());
/* Check that the correct flight information is returned. =/

Alternate use of Cucumber

Feature: Search available flights
Description: the user checks for available flights
Actors: User

Main scenario
Scenario: Search for available flights
Given the user wants to fly from "Copenhagen"
to "Paris" on "10.2.2018"
When the user searches for flights
Then these flights are returned
CPH	CDG	10.2.2018	LH 1023	8:30	1:30	1000
CPH	CDG	10.2.2018	AF 4201	9:00	1:30	2000
CPH	CDG	10.2.2018	SAS 0022	13:00	1:30	1500

Fail scenario one
Scenario: No flights when the departure date
has already past
Given that today is "1.2.2018"
Given the user wants to fly from "Copenhagen"
to "Paris"™ on "31.1.2018"
When the user searches for flights
Then the system provides the error message
that the departure date needs to be in the future

More scenarios for the other fail scenarios

BKO1
BK02
BKO3

Step definitions

@Given (""the user wants to fly from \" (["\"Ix)\" to \"(["\"]*)\"
on \" (["\"]%)\"S$")
public void theUserWantsToFlyFromToOn (String from, String to,
String date) throws Exception {
this.from = from;
this.to = to;
this.date = convertDateFromString(date);

}

@When (" “the user searches for flights$")
public void theUserSearchesForFlights () throws Exception {
result = travelAgency.searchFlights (from,to,date);

}

@Then ("“these flights are returneds$")

public void theseFlightsAreReturned(List<Map<String, String>> flights)
assertEquals (flights.size (), result.size());
/* check that the values of result are correct reg. flights x/

Detailed use case cancel trip

Feature: Cancel Trip
Description: the user cancels a trip that was booked
Actors: User

Scenario: cancel trip
Given that the user has booked a trip
And that the earliest date of a booking
belonging to that trip has not yet passed
When the user cancels the trip
Then the system shows the user the cost of cancellation
When the user confirms cancellation
Then the trip is cancled

Scenario: started trip cannot be cancelled
Given that the user has booked a trip
And that the earliest date of a booking
belonging to that trip has has passed
When the user cancels the trip
Then the system provides an error message
that the trip can’t be cancelled
because it has already started
And the trip is not cancled

Pre-condition

Feature: Delete trip
Description: the user deletes a trip
Actors: User

Scenario: The user deletes a trip
Given that the user
has planned a trip
When the user logs-in
And the user deletes the trip
Then the trip is deleted

Pre-condition

Feature: Delete trip
Description: the user deletes a trip
Actors: User

Scenario: The user deletes a trip
Given that the user
has planned a trip
When the user logs-in
And the user deletes the trip
Then the trip is deleted

» |Issue: The user has to
login each time

Pre-condition

Feature: Delete trip
Description: the user deletes a trip
Actors: User

Scenario: The user deletes a trip

Scenario: The user deletes a trip Given that the user
Given that the user has planned a trip
has planned a trip And that the user is logged-in
When the user logs-in When the user deletes the trip
And the user deletes the trip Then the trip is deleted

Then the trip is deleted

» Now the user has to be
logged in, but does not
have to login each time

» |Issue: The user has to
login each time

Contents

Requirements
Activity Diagrams
Domain model
Use Cases

Requirements Engineering Process

Requirements engineering process

p-type/e-type projects:
» impossible to get requirements right the first time

Requirements
Specification

System Requirements
Specification and
Modeling

User Requirements
Specification

Business Requirements
Specification

Requirements
Elicitation

Requirements
Validation

Req.
Elicitation User
Requirements

Elicitation

Reviews

System Requirements
ocume:

lan Sommerville, Software Engineering - 9

Requirements engineering process: Agile Methods

» Pareto principle 80/20
» Feedback: requirements change

High } =— Each iteration implement the highest- 1 . BUSineSS Processes
Priority “E priority work items .
= 2. Domain model
Modeled i / % Each new work item is .
e B <«—C> prioritized and added to 3. Use case diagram
greater detail] the stack
% 4. Take most important
[Work items may be use case scenario
Wiodeksaiin I:I reprioritized at any time
lesser delail\ g Work items may be removed 5. Detail use case / write
O sanvime Cucumber scenario
Low
.
Priority I—_—l S 6. Implement

Work Items Scott W. Ambler

7. Feedback: Adapt
requirements

Scott Ambler 2003-2014

http://www.agilemodeling.com/artifacts/userStory.htm

8. Repeat from step 4
» Lookout for Minimal Viable Product

http://www.agilemodeling.com/artifacts/userStory.htm

	Requirements
	Activity Diagrams
	Domain model
	Use Cases
	Use Case Diagram
	Detailed Use Cases

	Requirements Engineering Process

