
Software Engineering I (02161)
Week 2

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018



Contents

Software Development Process

Testing

Test Driven Development



Success rate for software projects 2000—2008
Sheet1

Page 1

2000 2002 2004 2006 2008

succeeded 28% 34% 29% 35% 32%

failed 23% 15% 18% 19% 24%

challenged 49% 51% 53% 46% 44%

2000 2002 2004 2006 2008

0%

20%

40%

60%

80%

100%

120%

challenged

failed

succeeded

CHAOS Summary 2009 Report

I Succeeded: 32%
I Failed: 20%
I Challenged: 48% (over

time, over budget, . . . )

I Challenges of Software
Development

I On time
I In budget
I No defects
I Customer satisfaction

I Type of projects
I s-type, p-type, e-type



Activities in Software Development

I Understand and document what the customer wants:
Requirements Engineering

I How to build the software: Design
I Build the software: Implementation
I Validate: Testing, Verification, Evaluation
→ Waterfall



Waterfall process

I 1970: Winston W. Royce how not to develop software
I 1985: Waterfall was required by the United States

Department of Defence

Hubert



Example: Empire State Steel Construction

From The Empire State

Building by John Tauranac
From Building the Empire State by Willis, 1998

I Kept the budget
I Was finished before

deadline
I Built in 21 month (from

conception to finished
building) (1931)

→ Basic design in
4 weeks

I Fast-track construction

→ Begin the
construction
before the
design is
complete

→ create a flow



Problem in Software Engineering

I Liggesmeyer 1998

Hubert



Delays in waterfall processes

D I TA

Features

Release date Time

Implementation by layers and not functionality

Hubert



Costs of changing requirements: Waterfall

I Changed / new requirements change the design and
implementation

I Cost of change not predictable
→ Avoid changing/new requirements if possible

→ Good for s-type projects, not applicable to p-type and
e-type projects

Hubert



Agile Software Development Methods (1999)
I Extreme Programming (XP) (1999), Scrum (1995–2001),

Lean Software Development (2003), . . .
I Kanban (2010): not a method; tool to improve processes

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

I Highest priority user story
first

I If delayed: important
features are implemented

Hubert



Problem in Software Engineering (Recap)

I Liggesmeyer 1998

Hubert



Changing Requirements: Agile Methods

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

I Cost of change
I New / changed requirements not done yet: zero costs
I Changed requirements already done: the cost of a

requirement that can not be implemented

http://www.agilemodeling.com/artifacts/userStory.htm


Resource Triangle

D I TA

Features

Release date Time

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

Hubert



eXtreme Programming (XP)
I Kent Beck 1999
I 12 Practices

Kent Beck, Extreme Programming 1st ed.

Hubert



Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia

I Robert Martin (Uncle Bob) about ”The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
→ History about agile methods, the agile manifesto, and

Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk
Hubert



Lean Software Development

I Lean Production:
I Value for the customer
I Reduce the amount of waste in the production process
I Generate flow

I Waste: resources used which do not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .



Generating flow using Pull and Kanban

WIP = Work in Progress Limit

1
324

A T IWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

8

7

9

10

5

6

Blah
Composite

Leaf Assembly4 2 3

3 3 3 3

Hubert



Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net


Online Kanban Tool: Trello

I www.trello.com: Electronic Kanban board useful for
your project

I Kanban board for the exercise
https://trello.com/b/w3Dal5rF

I Another https:
//trello.com/b/4wddd1zf/kanban-workflow

www.trello.com
https://trello.com/b/w3Dal5rF
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow


Contents

Software Development Process

Testing
Software Testing
Acceptance tests
JUnit
Cucumber

Test Driven Development



Purpose of tests

Goal: finding bugs

Edsger Dijkstra
”Tests can show the presence of bugs, but not their absence.”

→ proof of program correctness



Types of tests

1. Developer tests
a) Unit tests (single classes and methods)
b) Component tests (single components = cooperating

classes)
c) System tests / Integration tests (cooperating components)

2. Release tests
a) Scenario based testing
b) Performance testing

3. User tests
a) Acceptance tests



Acceptance Tests

I Tests defined by / with the help of the user
I based on the requirements

I Traditionally
I manual tests
I after the software is delivered

I Agile software development
I automatic tests: JUnit, Cucumber, . . .
I created before the user story / use case scenario is

implemented
I developed with the customer



Example of acceptance tests

I Use case
name: Login Admin
actor: Admin
precondition: Admin is not logged in
main scenario

1. Admin enters password
2. System responds true

alternative scenarios:
1a. Admin enters wrong password
1b. The system reports that the password is wrong and the use

case starts from the beginning

postcondition: Admin is logged in



Manual tests

Successful login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

Failed login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

Hubert



Manual vs. automated tests

I Manual tests should be avoided
I Are expensive; can’t be run often

I Automated tests
I Are cheap; can be run often

I Robert Martin (Uncle Bob) in
http://www.youtube.com/watch?v=hG4LH6P8Syk

I manual tests are immoral from 36:35
I how to test applications having a UI from 40:00

I How to do UI tests?
→ Solution: Test under the UI

http://www.youtube.com/watch?v=hG4LH6P8Syk


Test under the UI

Tests
Business Logic

Domain Layer
e.g. User, Book, ...

Business logic

Persistency Layer

User

Application Layer
e.g. LibraryApp
Business logic

Thin Presentation Layer
No Business Logic



Automatic acceptance test using JUnit
Successful login

@Test
public void testLoginAdmin() {

LibraryApp libApp = new LibraryApp();

assertFalse(libApp.adminLoggedIn());

boolean login = libApp.adminLogin("adminadmin");

assertTrue(login);
assertTrue(libApp.adminLoggedIn());

}

Failed login

@Test
public void testWrongPassword() {

LibraryApp libApp = new LibraryApp();

assertFalse(libApp.adminLoggedIn());

boolean login = libApp.adminLogin("admin");

assertFalse(login);
assertFalse(libApp.adminLoggedIn());

}

Hubert



Acceptance test as a Cucumber Feature
Feature: Admin login

Description: The administrator logs into the library system
Actor: Administrator

Scenario: Administrator can login
Given that the administrator is not logged in
And the password is "adminadmin"
Then the administrator login succeeds
And the adminstrator is logged in

Scenario: Administrator has the wrong password
Given that the administrator is not logged in
And the password is "wrong password"
Then the administrator login fails
And the administrator is not logged in

Step definitions (excerpt)

@Given("ˆthe password is \"([ˆ\"]*)\"$")
public void thePasswordIs(String password) throws Exception {

this.password = password;
}

@Then("ˆthe administrator login succeeds$")
public void theAdministratorLoginSucceeds() throws Exception {

assertTrue(libraryApp.adminLogin(password));
}

Hubert



JUnit

I Framework for automated tests in Java
I Kent Beck (Patterns, XP) and Erich Gamma (Design

Patterns, Eclipse IDE)
I Unit-, component-, and acceptance tests
I http://www.junit.org

I xUnit

http://www.junit.org
Hubert



JUnit and Eclipse

I JUnit 4.x libraries

I New source directory for tests

Hubert



JUnit 4.x structure

import org.junit.Test;
import static org.junit.Assert.*;

public class UseCaseName {
@Test
public void scenarioName1() {..}
@Test
public void scenarioName2() throws Exception {..}
...

}

I Independent tests
I No try-catch blocks (exception: checking for exceptions)

Hubert



JUnit 4.x structure (Before and After)

...
public class UseCaseName {

@After
public void tearDown() {...}
@Before
public void setUp() {...}
@Test
public void scenario1() {..}
@Test
public void scenario2() {..}
...

}



JUnit assertions (also used with Cucumber)

General assertions

import static org.junit.Assert.*;

assertTrue(bexp)
assertTrue(msg,bexp)

Specialised assertions for readability

import static org.junit.Assert.assertThat;
import static org.hamcrest.CoreMatchers.*;

1. assertFalse(bexp) / assertThat(bexp,is(false))

2. fail()

3. assertEquals(exp,act) / assertThat(exp,is(equal(act)))

4. assertNull(obj) / assertThat(obj,is(nullValue()))

5. assertNotNull(obj) / assertThat(obj,is(not(nullValue())))
...

Hubert



Cucumber

I Behaviour-Driven Development: User Stories
Feature: Name of the feature

Description ...

Scenario: Name
Description ...
Given an initial state
And ...
When an action happens
And ...
Then an assertion is true
And ...

I Originally Ruby
I Gherkin: for scenarios
I Programming language (Java): Glue code
I More information: The Cucumber for Java Book available

online through DTU library

Hubert



Example: Add book

Feature: Add book
Description: A book is added to the library
Actors: Administrator

Scenario: Add a book successfully
Given that the administrator is logged in
And I have a book with title "Extreme Programming",

author "Kent Beck",
and signature "Beck99"

When I add the book
Then the book is added to the library

Hubert



Example: Add book Step definitions

@Given("ˆthat the administrator is logged in$")
public void thatTheAdministratorIsLoggedIn() throws Exception {

assertTrue(libraryApp.adminLogin("adminadmin"));
}

@Given("ˆI have a book with title \"([ˆ\"]*)\", author \"([ˆ\"]*)\",
and signature \"([ˆ\"]*)\"$")

public void iHaveABookWithTitleAuthorAndSignature(String title,
String author, String signature) throws Exception {

book = new Book(title,author,signature);
}

@When("ˆI add the book$")
public void iAddTheBook() throws Exception {

try {
libraryApp.addBook(book);

} catch (OperationNotAllowedException e) {
errorMessage = e.getMessage();

}
}

@Then("ˆthe book is added to the library$")
public void theBookWithTitleAuthorAndSignatureIsAddedToTheLibrary(

String title, String author, String signature)
throws Exception {

assertTrue(libraryApp.getBooks().contains(book));
}

Hubert

Hubert



Contents

Software Development Process

Testing

Test Driven Development
Test Driven Development
Example of Test-Driven Development



Test-Driven Development

I Test before the implementation
→ API design
→ Testable software

I Tests = expectations on software
I All kind of tests: unit-, component-, system tests



TDD cycle

I Repeat for functionality, bug, . . .

I Until: no more ideas for tests
I Important:

I One failing test only
I Simplicity: Only write that code that make the test pass,

even if trivial
→ add failing tests to force more code

Hubert



TDD/BDD example: Borrow Book

Use Case = Cucumber Feature

Feature: Borrow Book
Description: The user borrows a book
Actors: User

Scenario: User borrows book
Given a book in the library
And a user is registered with the library
When the user borrows the book
Then the book is borrowed by the user

Scenario: User borrows book but has already more than 10 books
Given the user has borrowed 10 books
And a user is registered with the library
And a book is in the library
When the user borrows the book
Then the book is not borrowed by the user
And the user gets the error message "Can’t borrow more than 10 books"



Create the step definitions for the first scenario

@Given("ˆa book is in the library$")
public void aBookWithSignatureIsInTheLibrary() throws Exception {

throw new PendingException();
}

@Given("ˆa user is registered with the library$")
public void aUserIsRegisteredWithTheLibrary() throws Exception {

throw new PendingException();
}

@When("ˆthe user borrows the book$")
public void theUserBorrowsTheBook() throws Exception {

throw new PendingException();
}

@Then("ˆthe book is borrowed by the user$")
public void theBookIsBorrwedByTheUser() throws Exception {

throw new PendingException();
}



Implement the test logic

@Given("ˆa book is in the library$")
public void aBookWithSignatureIsInTheLibrary(String signature) throws Exception {

book = new Book("Extreme Programming", "Kent Beck", "Beck99");
libraryApp.adminLogin("adminadmin");
libraryApp.addBook(book);
libraryApp.adminLogout();

}

@Given("ˆa user is registered with the library$")
public void aUserIsRegisteredWithTheLibrary() throws Exception {

user = helper.getUser();
libraryApp.adminLogin("adminadmin");
libraryApp.registerUser(user);
libraryApp.adminLogout();

}

@When("ˆthe user borrows the book$")
public void theUserBorrowsTheBook() throws Exception {

helper.getUser().borrowBook(book);
}

@Then("ˆthe book is borrowed by the user$")
public void theBookIsBorrwedByTheUser() throws Exception {

assertThat(helper.getUser().getBorrowedBooks(),hasItem(book));
}



Implement the production code

public void borrowBook(Book book) {
borrowedBooks.add(book);

}



Implement (create) a second scenario:

Feature: Borrow Book
Description: The user borrows a book
Actors: User

Scenario: User borrows book
Given a book is in the library
And a user is registered with the library
When the user borrows the book
Then the book is borrowed by the user

Scenario: User borrows book but has already more than 10 books
Given the user has borrowed 10 books
And a user is registered with the library
And a book is in the library
When the user borrows the book
Then the book is not borrowed by the user
And the user gets the error message "Can’t borrow more than 10 books"



Implement the missing steps
@Given("ˆthe user has borrowed (\\d+) books$")
public void theUserHasBorrowedBooks(int arg1) throws Exception {

List<Book> exampleBooks = getExampleBooks(10);
addBooksToLibrary(exampleBooks);
for (Book b : exampleBooks) {
helper.getUser().borrowBook(b);
}

}

@Then("ˆthe book is not borrowed by the user$")
public void theBookIsNotBorrowedByTheUser() throws Exception {

assertThat(helper.getUser().getBorrowedBooks(),not(hasItem(book)));
}

@Then("ˆthe user gets the error message \"([ˆ\"]*)\"$")
public void theUserGetsTheErrorMessage(String errorMessage)

throws Exception {
assertEquals(errorMessage, this.errorMessage.getErrorMessage());

}

@When("ˆthe user borrows the book$")
public void theUserBorrowsTheBook() throws Exception {

try {
helper.getUser().borrowBook(book);
} catch (TooManyBooksException e ) {
errorMessage.setErrorMessage(e.getMessage());
}

}



Implementation of the alternative scenario

public void borrowBook(Book book) throws TooManyBooksException {
if (borrowedBooks.size() >= 10) {
throw new TooManyBooksException();

}
borrowedBooks.add(book);

}

Implement missing logic
I Add more scenarios
I Add JUnit tests



Another example with JUnit

I Creating a program to generate the n-th Fibonacci number
→ Codemanship’s Test-driven Development in Java by Jason

Gorman
http://youtu.be/nt2KKUSSJsY

I Note: The video uses JUnitMax to run JUnit tests
automatically whenever the test files change, which, it
seems, is not available anymore.

I A tool with similar functionality but free is Infinitest
(https://infinitest.github.io)

http://youtu.be/nt2KKUSSJsY
https://infinitest.github.io


Exercise

I Trello Board: https://trello.com/b/w3Dal5rF

https://trello.com/b/w3Dal5rF

	Software Development Process
	Testing
	Software Testing
	Acceptance tests
	JUnit
	Cucumber

	Test Driven Development
	Test Driven Development
	Example of Test-Driven Development


