
Software Engineering I (02161)
Week 1

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2018

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

Programming Assignment

The course

I 5 ECTS course 02161: Software Engineering 1
I Target group: Bachelor in Software Technology and

Network Technology and IT in the second semester
I Learning objectives

I Overview over software engineering: What is there more
than programming?

I Learn software engineering techniques
I Communicate requirements, architecture, and design
I Do a smaller project from an informal and open description

of the problem

Who are we?

I 117 students with different backgrounds
I Bachelor Software Technology: 73 (62%)
I Bachelor Network Technology and IT: 22 (19%)
I Other: 22 (19%)

I Teacher
I Hubert Baumeister, Assoc. Prof. at DTU Compute

(huba@dtu.dk; office 303B.058)
I 3 Teaching assistants

I Sarah Dam
I Theis Kierkegaard Hauge
I Marcus Pagh

Course Language

I The course language is Danish; slides, notes, and other
material mostly in English

I If everybody agrees to that, it can be given in English

Contents

Course Introduction

Introduction to Software Engineering
Introduction
Development Example

Practical Information

Programming Assignment

What is software?

I Software is everywhere
I Desktop applications
I Web applications
I Embedded systems (IOT)
I Large batch systems
I Operatiing systems
I Big-data
I Artifical intelligence
I . . .

I Types of software
I Mass production, Customised software, Mixture of both

Types of software (Lehmann)

I s-type: mathematical function, sorting: complete
specfication

I p-type: real world problems, e.g., chess: modelling the real
world

I e-type: embeded into socia-technical systems.
Requirements change as the environment changes.
System changes the environment: e.g., operating system

I Continuing Change
I Increasing Complexity
I Conservation of Organisational Stability (invariant work

rate)
I Continuing Growth
I Declining Quality

Success rate for software projects 2000—2008
Sheet1

Page 1

2000 2002 2004 2006 2008

succeeded 28% 34% 29% 35% 32%

failed 23% 15% 18% 19% 24%

challenged 49% 51% 53% 46% 44%

2000 2002 2004 2006 2008

0%

20%

40%

60%

80%

100%

120%

challenged

failed

succeeded

CHAOS Summary 2009 Report

I Succeeded: 32%
I Failed: 20%
I Challenged: 48% (over

time, over budget, . . .)

Failed or challenged
I Amanda
I Rejsekortet
I Obamacare Website
I German road toll system
I Denver airport baggage

system
I . . .

Scaling software development

Small hut
I one person
I no special knowledge

Skyscraper
I not possible with one

person
I special knowledge: static,

electricity, water, waste,
elevator, . . .

Small software — large software: bug fixing

Small program
I find the defect
I fix the defect
I adjust docu-

mentation

Large software
I report defect
I collect defect reports
I analyse problem
I identify bug
I define a bug fixing strategy
I fix the bug
I testing: bug fixed; no new bugs
I accept the fixed version
I integrate parallel changes
I update release documentation
I release the new system

Software attributes
I Maintainability

I Readable code (clean code, self documenting code, good
documentation)

I Reduce complexity (Design Pattern, low coupling/high
cohesion)

I Dependability and security
I Includes: reliability (robustness), privacy, and safety
I Example: Apple root access on macOS

I Efficiency
I Don’t waste system resources
I Responsiveness, processing time, memory utilisation

I Acceptability / user friendliness

Software attributes
I Maintainability

I Readable code (clean code, self documenting code, good
documentation)

I Reduce complexity (Design Pattern, low coupling/high
cohesion)

I Dependability and security
I Includes: reliability (robustness), privacy, and safety
I Example: Apple root access on macOS

I Efficiency
I Don’t waste system resources
I Responsiveness, processing time, memory utilisation

I Acceptability / user friendliness

Software attributes
I Maintainability

I Readable code (clean code, self documenting code, good
documentation)

I Reduce complexity (Design Pattern, low coupling/high
cohesion)

I Dependability and security
I Includes: reliability (robustness), privacy, and safety
I Example: Apple root access on macOS

I Efficiency
I Don’t waste system resources
I Responsiveness, processing time, memory utilisation

I Acceptability / user friendliness

Software attributes
I Maintainability

I Readable code (clean code, self documenting code, good
documentation)

I Reduce complexity (Design Pattern, low coupling/high
cohesion)

I Dependability and security
I Includes: reliability (robustness), privacy, and safety
I Example: Apple root access on macOS

I Efficiency
I Don’t waste system resources
I Responsiveness, processing time, memory utilisation

I Acceptability / user friendliness

Acceptability / user friendliness

Acceptability / user friendliness

What belongs to software?

I 10.000 LOC program, no special knowledge needed: How
much time?

I Industry estimate: 24 month: around 23 LOC per work day.
I Software development is more than programming

I Validation (e.g. tests)
I Documentation (User–, System–)
I Configuration files
I . . .

What belongs to software?

I 10.000 LOC program, no special knowledge needed: How
much time?

I Industry estimate: 24 month: around 23 LOC per work day.

I Software development is more than programming
I Validation (e.g. tests)
I Documentation (User–, System–)
I Configuration files
I . . .

What belongs to software?

I 10.000 LOC program, no special knowledge needed: How
much time?

I Industry estimate: 24 month: around 23 LOC per work day.
I Software development is more than programming

I Validation (e.g. tests)
I Documentation (User–, System–)
I Configuration files
I . . .

Program vs product

Factor 3—20 from program to product

Software Engineering

Young disciplin: 1968 Nato conference

Software Engineering Definition (Sommerville 2010)
Software engineering is an engineering discipline that is
concerned with all aspects of software production from the
early stages of system specification through to maintaining the
system after it has gone into use.

I An engineer
I applies appropriate theories, methods, and tools

I All aspects of software production:
I Not only writing the software but also
I Software project management and creation of tools,

methods and theories

Basic Activities in Software Development

I Understand and document what kind of the software the
customer wants (Requirements Analysis)

I Determine how the software is to be built (Design)
I Build the software (Implementation)
I Validate that the software solves the customers problem

(Test)
→ Each activity has a set of techniques and methods

Software Development Process Types

Plan-driven development (Waterfall, RUP, . . .)

D I TA

Features

Release date Time

Agile development (Extreme Programming, Scrum, . . .)
Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration

Software Development Process Types

Plan-driven development (Waterfall, RUP, . . .)

D I TA

Features

Release date Time

Agile development (Extreme Programming, Scrum, . . .)
Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration

Example Vending Machine Controller

Controller software for a
vending machine

Requirements: Glossary

Purpose:
I Understand the problem domain
I Common language

Example
I Vending machine: The vending machine allows users to

buy fruit.
I User: The user of the vending machine buys fruit by

inserting coins into the machine.
I Owner: The owner owns the vending machine. He is

required to refill the machine and can remove the money
from the machine.

I Display: The display shows how much money the user has
inserted.
. . .

Requirements: Use case diagram

Cancel

Buy fruit

Vending Machine

User

Requirements: Detailed Use Case: Buy Fruit

Feature: Buy fruit
Description: A user buys a fruit from the vending machine
Actors: User

Scenario: Buy a fruit with enough money
Given the vending machine has fruits
When the user enters enough money for a fruit
And the user selects a fruit
Then the fruit will be dispensed
And the machine returns the rest money
And the machine remembers its earnings

... (More scenarios)

Validation: Specify success criteria: Acceptance tests
Use detailed use cases directly (Cucumber)

Scenario: Buy a fruit with enough money
Given the vending machine has fruits
When the user enters enough money for a fruit
And the user selects a fruit
Then the fruit will be dispensed

VendingMachineSteps.java

@Given("ˆthe vending machine has fruits$")
public void theVendingMachineHasFruits() throws Exception {

vendingMachine = new VendingMachine(2,2);
}
@When("ˆthe user enters enough money for a fruit$")
public void theUserEntersEnoughMoneyForAFruit() throws Exception {

vendingMachine.input(3);
}
@When("ˆthe user selects a fruit$")
public void theUserSelectsTheFruit() throws Exception {

vendingMachine.selectFruit(Fruit.APPLE);
}
@Then("ˆthe fruit will be dispensed$")
public void theFruitWillBeDispensed() throws Exception {

assertEquals(Fruit.APPLE, vendingMachine.getDispensedItem());
}

Vending Machine: Design and implementation

I Determine how the software is to be built
→ Class diagrams
→ Sequence diagrams
→ State machines

I Build the software

Design: High-level Class diagram

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()

*

Application logic as a state machine

event guard state state state

Idle (I)

banana

banana -> B -> B

banana -> I -> I

apple

apple -> A -> A

apple -> I -> I

money

money

money

cancel return current money

Banana selected and
not enough money

(B)

Apple selected and
not enough money

(A)

enough money for
banana

dispense banana and
rest money

dispense banana and
rest money-> I

dispense banana and
rest money-> I

not enough
money for banana

no bananas
available

enough money for
apple

dispense apple and
rest money -> I

dispense apple and
rest money -> I

dispense apple and
rest money -> I

not enough
money for apple

no apples
available

enough money for
banana

add money to current
money

dispense banana and
rest money-> I

add money to current
money

enough money for
apple

add money to current
money

add money to current
money

dispense apple and
rest money -> I

not enough
money for neither
banana nor apple

add money to current
money

add money to current
money

add money to current
money

return current money
-> I

return current money
-> I

Design: Design of the system as class diagram

Use State pattern (a design pattern)

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()
~setIdleState()
~dispense(f: Fruit)
~setCurrentStateForFruit(f: Fruit)
~hasFruit(f: Fruit)

1

«interface»
VendingMachineState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

IdleState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

FruitSelectionState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

1

*

m.setCurrentMoney(m.getCurrentMoney() + i);

if (!m.hasFruit(fruit)) {
 m.setIdleState();
 return;
}
if (m.hasEnoughMoneyFor(fruit)) {
 m.setIdleState();
 m.dispense(fruit);
} e l se {
 m.setCurrentStateForFruit(fruit);
}

m.dispense(null);

super.input(m, i);
if (m.hasEnoughMoneyFor(selectedFruit)) {
 m.setIdleState();
 m.dispense(selectedFruit);
}

m.setIdleState();
super.cancel(m);

Design: Visualization of the Execution

I Interaction Diagrams, aka. Sequence Diagrams
I used for designing the system
I used for documenting the system

I Vending Machine
Vending Machine

 select(APPLE)

 select(APPLE)

 hasEnoughMoney

false

 setCurrentState(f)

 input(3)

 input(3)

 hasEnoughMoney

 true

 dispense(APPLE)

 setIdleState

User Vending Machine i:IdleState f:FruitSelectedState

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

Programming Assignment

Course content

1. Requirements Engineering (Use Cases, User Stories,
Glossary)

2. Software Testing (JUnit, Cucumber, Test Driven
Development, Systematic Tests, Code Coverage)

3. System Modelling (Class Diagrams, Sequence Diagrams,
Activity Diagrams)

4. Architecture (hexagonal, layered, . . .)
5. Design (SOLID, Design Patterns, Design by Contract, . . .)
6. Software Development Processes (focus on agile

processes)

Software and Tools

I Programming language: Java (latest version of Java 8)
I IDE: latest version of Eclipse: Simple Java IDE is sufficient
I Test framework: Cucumber and JUnit

. . .

Course activities

I Lectures every Monday 13:00 — 15:00
I Exercises after the lecture

I Teaching assistants will be present : 15:00 — 17:00
I Expected work at home: 5 hours
I Important: Ask questions: during the lecture, e-mail,

CampusNet, . . .

Examination

I Exam project in groups of 4
I Model, Software, Report, Demonstration
→ Focus on that you have learned the techniques and

methods
I no written/oral examination

I Week 13: Demonstration of the projects (each project 10
min) and submission of final implementation

→ Grade is based on an evaluation of submissions as a
whole (helheds vurdering)

Course material

I Course Web page:
http://www.imm.dtu.dk/courses/02161 contains

I practical information: (e.g. lecture plan)
I Course material (e.g. slides, exercises, notes)
I Check the course Web page regularly

I CampusNet: Is being used to send messages;
I make sure that you receive all messages from CampusNet

I Books:
I Textbook: UML Distilled by Martin Fowler (online via DTU

library), Software Engineering 9/10 from Ian Sommerville
I Suplementary literature on the course Web page

http://www.imm.dtu.dk/courses/02161

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

Programming Assignment

Programming Exercise

I Library software
I Guided development based on agile software development

principles
I Behaviour-driven-development (TDD/BDD)

Eric Evans, Domain Driven Design, Addison-Wesley,

2004

1. Development of the application + domain
layer

2. Presentation layer

3. Simple persistency layer

First week’s assignment

I Given use case scenarios for: Admin Login, Admin logout,
Add book, and Search book
Scenario: Administrator can login

Given that the administrator is not logged in
And the password is "adminadmin"
Then the administrator login succeeds
And the adminstrator is logged in

I And step definitions
@Given("ˆthat the administrator is not logged in$")
public void thatTheAdministratorIsNotLoggedIn() throws Exception {

assertFalse(libraryApp.adminLoggedIn());
}
@Then("ˆthe administrator login succeeds$")
public void theAdministratorLoginSucceeds() throws Exception {

assertTrue(libraryApp.adminLogin(password));
}
...

I Implement the production code
I Test have to pass

I Tools: Cucumber and JUnit

	Course Introduction
	Introduction to Software Engineering
	Introduction
	Development Example

	Practical Information
	Programming Assignment

