Software Engineering | (02161)
Week 10

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

=
—
=

i

Last Week

» Layered Architecture: Persistent Layer
» Software Development Processes
» Waterfall
» (Rational) Unified Process
» Agile Processes: User story driven, travel light, Agile
Manifesto

Contents

Software Development Process
Project planning

Design by Contract (DbC)

eXtreme Programming (XP)

g ZXTRENL PROCRAMNING EXPLAINED ! ZMBEACE

AVAILABLE.

Kent Beck, Extreme Programming 2nd ed.

Scrum

24h

30 days

==

Product Backlog Sprint Backlog Sprint ‘Working increment

of the software
Wikipedia
» Robert Martin (Uncle Bob) about "The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
— History about agile methods, the agile manifesto, and
Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk

Lean Software Development

> Led OQ U R
» Reduce the amount of waste in the production process
» Generate flow

» Waste: resources used which do not produce value for the

customer

» time to change the system because it does not fit the
customers requirements

» time waiting for approval

> ...

Hubert

Cycle time

Cycle time
Time it takes to go through the process one time

number _of _features \{/
feature_implemantion_rate 4

cycle_time =

» Example: Waterfall
» Batch size = number_of_features in an iteration
» Software: 250 features, feature_implementation_rate = 5
features/week
» cycle_time = 250 f/ (5 f/w) = 50 weeks

» Overall time:w

— 1 cycle

Hubert

Goal: Reducing the cycle time

» Reduce batch siz€: 1 feature in an iteration /f

» Software: 250 feature@re,lmplementati@S

features/week

number _of _features
feature_implemantion_rate

> Aiile: cycle_time =1f/(5f/w)=1/5week=1day=8h_

» Advantages
Process adapts to changes in requirements
Process improvements and fine tuning

cycle_time =

Hubert

Generating flow Wsing Pull and Kanban

WIP = Work in Progress Limit

I Done

D WIP 3 Queue T w|@ Queue WIP 3

6[:‘.LIUL Work Item QueueAWlP3)Queuc
— (&2
= ?Z: b
8]
mB g
bolileun

D 3 3] [
A B L

Hubert

Flow through Pull with Kanban

» Process controlling: local rules

» Load balancing: Kanban cards and Work in Progress
(WIP) limits
» Integration in other processes

Figure from David Anderson www.agilemanagement .net

www.agilemanagement.net
Hubert

Online Kanban Tool: Trello

» www.trello.com: Electronic Kanban board useful for
your project

» Example Kanban board https:
//trello.com/b/4wdddlzf/kanban-workflow

www.trello.com
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow

Contents

Software Development Process
Project planning

Design by Contract (DbC)

Project Planning

» Project plan
» Defines:
» How work is done
» Estimate
» Duration of work
» Needed resources
— Price
» Project planning
» Proposal stage

— Price
— Time to finish

» Project start-up
— Staffing, ...

» During the project
» Progress (tracking)
» Adapt to changes

Hubert

Planning Agile Projects

» fixed general structure
— e.g. quarterly cycle / weekly cycle practices in XP / sprints

in Scrum

RClcszC Iteration 1
Planning

Iw—4w 1w—4w (but fixed)

Release 1

Pl

Iteration n

Release

Planning Iteration n

p1/ Iteration 1 ‘ = |pI

Release m

3m-6m

» time boxing

» fixed:. rele

adjustable: scope

se-dates and iterations

» Planning: Which user story in which iteration / release

Hubert

Planning game

Goal of the game:
» List of prioritized user stories
Customer defines:
| » user stories
» priorities
Developer define:
» costs, risks
» suggest user stories
Customer decides: is the user story worth its costs?

— split a user story
— change a user story

v

v

v

v

Hubert

Scrump/XP: Project estimation and monitoring

» Estimation: two possibilities

1) Estimate ideal time (e.g. person days / week) * load_factor
2) Estimate relative to other user stories: story points

» Monitoring

ad 1) New load factor: total_iteration_time / user_story_time
finished
ad 2) velocity: Number of points per iteration

— What can be done in the next iteration

» Yesterdays weather: Calculate velocity/load_factor based
on the /ast iteration only

» Important: If in trouble focus on few stories and finish them

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Lean / Kanban: User story estimation

» No "iterations”: user stories come in and flow through the
system
— Only a rough estimation of the size of the user storleS/

» try to level the size of the user stories ‘/{\
» Divide larger into smaller ones [

» Measure process parameters, e.g., average\cycle time e
» E.g. "After committing to a user story, it takes in average a

week to have the user story finished”
» User average_cycle_time and WIP (Work In Progress) Limit

to determine the capacity of the process and thus
throughput

avf-w.’.

Hubert

Hubert

Hubert

Hubert

Hubert

Example of a Kanban board for the exam project

» https://trello.com/b/1029C07w/02161l-example

- R

o T

https://trello.com/b/iO29C07w/02161-example
Hubert

Contents

Software Development Process
Project planning

Design by Contract (DbC)
Contracts
Implementing DbC in Java
Assertion vs Tests
Inheritance
Invariants
Defensive Programming

. . ?
What does this funcrt'lg)%S 99_. kg Quidsort

public List<Integer> f(List<Integer> list) {
if (list.size() <= 1) return list;

int p = list.elementAt (0);

List<Integer> 11 = new ArrayList<Integer>();
List<Integer> 12 = new ArrayList<Integer>();
List<Integer> 13 = new ArrayList<Integer>();

g(p,1list,11,12,13);
List<Integer> r = f(11);

r.addAll (12);
r.addAll (£(13));

return r;

}

public void g(int p, List<Integer> list,
List<Integer> 11, List<Integer> 12, List<Integer> 13)

for (int 1 list) |
if (i < p) 1ll.add(i);
if (i == p) 13.add(i);
if (i > p) 12.add(i);

Hubert

What does this function do?

public void testEmpy () {
int[] a = {};
List<Integer> r = f(Array.aslList(a));
assertTrue (r.isEmpty());

}

public void testOneElement () {
int[] a = { 3 };
List<Integer> r = f(Array.aslList(a));
assertEquals (Array.asList (3),r);

}

public void testTwoElements () {
int[] a = {2, 1};
List<Integer> r = f(Array.aslist(a));
assertEquals (Array.asList (1,2),r);

}

public void tT Elements () {
int[] a =\{2, 3

List<Integer> r = f (Array, ist(a));
assertEquals (Array.asListNd,2,3),1r);

}

Hubert

What does this function do?

List<Integer> f (List<Integer> a)

Precondition: ais not null
Postcondition: For all result, a € List<Integer>:
result == f(a)

if and only if

isSorted(result) and sameElements(a,result)
where —

IisSorted(a) if and only if L=
forall 0 <i,j < asize(): \
’iglimplies gﬁe_t(i) < a.get(j)
and
sameElements(a,b) if and only if

for all i € Integer: count(a,i) = count(b. i)

NN

o 3

Hubert

Example Counter

’@9\(““"(ﬁpzc \}‘CfJ\blA

{context Counter :: dec ()
pre:i>0
post:i=i@pre-1 }

C-> couwack {v dac

public T n(T1l al,

aeuw ¥

c.dec();

// Before returning from dec,

.

Counter
izint TN

inc() : void
dec() : void

{context Counter
inv: i >=0}

post: i = i@pre + 1}

{context Counter :: inc () Br,‘:{.'u‘

Tn an, Counter c)

—)
// Here the precondition of c¢ has to hold (('dr wme
// to fulfil the contract of Counter::dec

// postcondition of dec

/C cokkea(‘.

-

c has to ensure the

Hubert

Hubert

Hubert

Hubert

Hubert

Design by contract

» Name invented by Bertrand Meyer (Eiffel programming
language) for pre-/post-condition based formal methods
applied to object-oriented designs/languages

» Pre-/post-conditions were invented by Tony Hoare and
RobertW. Floyd

Contract for a method
» precondition: a boolean expression over the state of the
object and arguments before the execution of the method

» postcondition: a boolean expression over the state of the
object and arguments before the execution of a method
and the result of the method and the state of the object
after the execution of the method vl 0y Gk)

=3 &
Contract between Caller and the Method [* Y D

» Caller ensures precondition

oy S‘L\LA Skka
» Method ensures postcondition

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Bank example with constraints

{context Bank
Bank _ _ _ _|inv: accounts->forAli(a | a.owner = self)

1
owner

accounts
0.*

Account

bal :int - -

update(n : int) : void

{pre: bal + n>=0
post: bal = bal@pre + n and
history.ocllsNew() and
history.bal = bal@pre and
history.prev = history@pre;

.1

History

bal : int prev

History() : void

Hubert

Update operation of Account

{prejbal + n >=0
pre Coudha TmtmER
/ i =
history.bal = bal@pre and
history.prev = history@pre]
State before ex ing
update (n)

{n+b>=0} %__I

a: Account

|
|
|
|
bal=b_ ————1 -

h: History
bal=m

Hubert

Update operation of Account

{pre: bal + n >= 0

—_—
history.oclisNew

history.prev = histo

State before executing
update (n)

m+b>=0p B

a: Account

P’Fe"‘uﬂov'-l
h: History
bal=m

post: bal = bal@pre + n Aot
M ba@grg and —k

\—/ h: History
bal=m

[N

and

State after executing
update (n)

Hkﬂwa
hl: History

baléh)
/

Hubert

Example Object Goushaiuh (enjuoy.

OCL expxssion :QOV‘ S
. .) Uiou
LibraryApp: :addMedium (Medium m) b//

: adminlLoggedI
pre adminlb.o e n Q)NQA

post: medium = medium@pre->including(m)_ and
medium.library = this lq“ﬂ”“%‘ (;w

are

LibraryApp::search(String string) : List<Medium>
post: result = medium->select (m |
m.title.contains (string)
m.autor.contains (string)
m.signature.contains (string))
medium = medium@pre
/“

User: :borrowMedium (Medium m)
pre:qborrowedMedium—>sjzg < 10

and m != null
and not (borrowedMedium—>exists(m’ | m’.isOverdue))
post: m.borrowDate = 1ibApp.getDate() and
borrowedMedium = borrowedMedium@pre->including (m)

Hubert

Implementing DbC with assertions

» Many languages have an assert construct. In Java:
assert bexp,\QKassert bexp‘:_str‘ing;
» Contract for Counter::dec(i:int) |

(Pre: i>0

Post: i = i@pre — 1

void dec () {

—>assert i > 0 : "Precondition violated"; // Precondition

—>int iatpre = i; // Remember the value of the counter
- =

// to be used in the postcondition

i-—;
POSL —>assert i ==l : "Postcondtion violated"; // Postcondition
}

> w are not the same!
bs)-

T L Jhat bsek i o
Osseelion Uk (vsithe @ watliod,

Hubert

Implementing DbC in Java

Pre: args # null and args.length > 0
Post: Vn € args : min < n < max

public class MinMax {
int min, max;

public void minmax (int[] args) throws Error ({
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; 1 < args.length; i++) {
int obs = argsl[i];
if (obs > max)
max = obs;
else if (min < obs)
min = obs;
}
assert isBetweenMinMax (args);

}

private boolean isBetweenMinMax (int[] array) {
boolean result = true;
for (int n : array) {
result result && (min <= n && n <= max);
}

return result;

Important
» Assertion checking is switched off by default in Java
1) Use java -ea Main to enable assertion checking

2) In Eclipse
Java - Counter/src/dty
T isicsam |

o G B

Junit =
Run As >

B E Run Configurations...

Organize Favori

8 Failures
800 Run Configurations
Create, manage, and run configurations
Create a configuration that will launch a JUnit test. @

> [-+
[T 5 % |2 3¢ || Name: [TestCounter

type filter text [E] Test [69= Arﬂgggé= ;. Classpath | =), JRE | &/ Source| ™2

[Java Applet Program arguments
[TJava |
¥ JuJunit
Ju TestCounter

m2 Maven Build B
Variables...

JujTask Context Tes

VM arguments:

Apply Revert

Filter matched 6 of 44 |

@ [cese | [Rn]

Assertions

» Advantage

» Postcondition is checked for each computation
» Precondition is checked for each computation
» Disadvantage
» Checking that a postcondition is satisfied can take as much
time as computing the result
— Performace problems
» Solution:
» Assertion checking is switched on during developing,

debugging and testing and switched off in production
systems

Assertion vs. Tests

» Assertion
» Checks all computations (as long as assertion checking is
switched on)
» Checks also for contract violations from the client (i.e.
precondition violations)
» Tests

» Only checks test cases (concrete values)
» Cannot check that the clients establish the precondition

Contracts and inheritance

{contextC::m
pre: preC_m
post: post*C_m}

{contextD :: m
pre: pre*D_m
post: post*D_m}

o —

Contracts and Inheritance

Liskov / Wing Substitution principle:

At every place, where one can use objects of the superclass C,
one can use objects of the subclass D

public T n(C c)
// n has to ensure Pre"C_m

c.m();
// n can rely on Post”C_m

t.n(new C()) vs. t.n(new D()).
— Pre$, — Preb weaken precondition

— Post? — Post¢ strengthen
postcondition

Invariants: Counter

{context Counter :: dec ()
pre:i>0
post:i=i@pre-1 }

» Methods

Counter

irint

_inv: i>=0}

inc() : void
dec() : void

» assume that invariant holds
» ensure invariants

» When does an invariant hold?

» After construction

» After each public method

{context Counter

{context Counter :: inc ()
post: i = i@pre + 1}

]

Invariants

» Contstructor has to ensure invariant

public Counter () {
i=0;
assert 1 >= 0; // Invariant

}

» Operations ensure and assume invariant

void dec() {
assert i >= 0; // Invariant
assert i1 > 0; // Precondition
int iatpre = 1i; // Remember the value of the counter
// to be used in the postcondition
i-—;
assert i == iatpre-1; // Postcondition
assert i >= 0; // Invariant

Defensive Programming

» Can one trust the client to ensure the precondition?
void dec () { i--; }
» Depends if the programmer controls the client or not

» e.g. if dec is private, only the programmer of the method
can call dec
» if dec is publick, potentially others can call the method

Defensive Programming

» If one does not trust the client
» Check explicitly that the precondition of a method is

satisfied
» Either
void dec() { if (i > 0) { i--; } }
» Or
void dec () {

if (i <= 0) {

throw new Exception("Dec not allowed ...

}
i--;

}

» Don’t rely on the assert statement.
» Why?

void dec() {
assert i <= 0;
i-—;

")

Defensive Programming

» Use defensive programming with public methods
» Use asserts with private or package private methods
» For example public method of a library

Framework
PublicClass ackagePrivateClass
Client —
+n m

» Public method of a class in the application/domain layer

Next week

» Principles of Good Design
» Design Patterns

	Software Development Process
	Project planning
	Design by Contract (DbC)
	Contracts
	Implementing DbC in Java
	Assertion vs Tests
	Inheritance
	Invariants
	Defensive Programming

