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Last Week

I Layered Architecture: Persistent Layer
I Software Development Processes

I Waterfall
I (Rational) Unified Process
I Agile Processes: User story driven, travel light, Agile

Manifesto
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eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.



Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h
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Wikipedia

I Robert Martin (Uncle Bob) about ”The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
→ History about agile methods, the agile manifesto, and

Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk


Lean Software Development

I Lean Production:
I Reduce the amount of waste in the production process
I Generate flow

I Waste: resources used which do not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .
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Cycle time

Cycle time
Time it takes to go through the process one time

cycle time =
number of features

feature implemantion rate

I Example: Waterfall
I Batch size = number of features in an iteration
I Software: 250 features, feature implementation rate = 5

features/week
I cycle time = 250 f / (5 f/w) = 50 weeks
I Overall time: 50 weeks
→ 1 cycle

Hubert



Goal: Reducing the cycle time

I Reduce batch size: 1 feature in an iteration
I Software: 250 features, feature implementation rate = 5

features/week

cycle time =
number of features

feature implemantion rate

I Agile: cycle time = 1 f / (5 f/w) = 1/5 week = 1 day = 8 h
→ 250 cycles
I Advantages

I Process adapts to changes in requirements
I Process improvements and fine tuning

Hubert



Generating flow using Pull and Kanban

WIP = Work in Progress Limit
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Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net
Hubert



Online Kanban Tool: Trello

I www.trello.com: Electronic Kanban board useful for
your project

I Example Kanban board https:
//trello.com/b/4wddd1zf/kanban-workflow

www.trello.com
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow
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Project Planning

I Project plan
I Defines:

I How work is done
I Estimate

I Duration of work
I Needed resources
→ Price

I Project planning
I Proposal stage
→ Price
→ Time to finish

I Project start-up
→ Staffing, . . .

I During the project
I Progress (tracking)
I Adapt to changes

Hubert



Planning Agile Projects

I fixed general structure
→ e.g. quarterly cycle / weekly cycle practices in XP / sprints

in Scrum

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I time boxing
I fixed: release dates and iterations
I adjustable: scope

I Planning: Which user story in which iteration / release

Hubert



Planning game

I Goal of the game:
I List of prioritized user stories

I Customer defines:
I user stories
I priorities

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story

Hubert



Scrump/XP: Project estimation and monitoring

I Estimation: two possibilities
1) Estimate ideal time (e.g. person days / week) * load factor
2) Estimate relative to other user stories: story points

I Monitoring
ad 1) New load factor : total iteration time / user story time

finished
ad 2) velocity : Number of points per iteration

→ What can be done in the next iteration
I Yesterdays weather: Calculate velocity/load factor based

on the last iteration only
I Important: If in trouble focus on few stories and finish them

Hubert
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Lean / Kanban: User story estimation

I No ”iterations”: user stories come in and flow through the
system

→ Only a rough estimation of the size of the user stories
I try to level the size of the user stories
I Divide larger into smaller ones

I Measure process parameters, e.g., average cycle time
I E.g. ”After committing to a user story, it takes in average a

week to have the user story finished”
I User average cycle time and WIP (Work In Progress) Limit

to determine the capacity of the process and thus
throughput

Hubert
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Example of a Kanban board for the exam project

I https://trello.com/b/iO29C07w/02161-example

https://trello.com/b/iO29C07w/02161-example
Hubert
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What does this function do?

public List<Integer> f(List<Integer> list) {
if (list.size() <= 1) return list;

int p = list.elementAt(0);

List<Integer> l1 = new ArrayList<Integer>();
List<Integer> l2 = new ArrayList<Integer>();
List<Integer> l3 = new ArrayList<Integer>();

g(p,list,l1,l2,l3);

List<Integer> r = f(l1);

r.addAll(l2);
r.addAll(f(l3));

return r;
}

public void g(int p, List<Integer> list,
List<Integer> l1, List<Integer> l2, List<Integer> l3) {

for (int i : list) {
if (i < p) l1.add(i);
if (i == p) l3.add(i);
if (i > p) l2.add(i);

}
}

Hubert



What does this function do?

public void testEmpy() {
int[] a = {};
List<Integer> r = f(Array.asList(a));
assertTrue(r.isEmpty());

}

public void testOneElement() {
int[] a = { 3 };
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(3),r);

}

public void testTwoElements() {
int[] a = {2, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2),r);

}

public void testThreeElements() {
int[] a = {2, 3, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2,3),r);

}
...

Hubert



What does this function do?

List<Integer> f(List<Integer> a)

Precondition: a is not null
Postcondition: For all result ,a ∈ List<Integer>:
result == f (a)
if and only if

isSorted(result) and sameElements(a,result)
where

isSorted(a) if and only if
for all 0 ≤ i , j < a.size():

i ≤ j implies a.get(i) ≤ a.get(j)

and
sameElements(a,b) if and only if

for all i ∈ Integer : count(a, i) = count(b, i)

Hubert



Example Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv:  i >= 0}

{context Counter :: inc ( ) 
post: i = i@pre + 1}

{context Counter :: dec ( ) 
pre: i > 0 
post: i = i@pre - 1  }

public T n(T1 a1, .., Tn an, Counter c)
...
// Here the precondition of c has to hold
// to fulfil the contract of Counter::dec
c.dec();
// Before returning from dec, c has to ensure the
// postcondition of dec
...
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Design by contract
I Name invented by Bertrand Meyer (Eiffel programming

language) for pre-/post-condition based formal methods
applied to object-oriented designs/languages

I Pre-/post-conditions were invented by Tony Hoare and
Rober W. Floyd

Contract for a method
I precondition: a boolean expression over the state of the

object and arguments before the execution of the method
I postcondition: a boolean expression over the state of the

object and arguments before the execution of a method
and the result of the method and the state of the object
after the execution of the method

Contract between Caller and the Method
I Caller ensures precondition
I Method ensures postcondition

I Contracts specify what instead of how

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert



Bank example with constraints

Bank

Account

update(n : int) : void

bal : int

History

History() : void

bal : int

0..1

prev

1

1

0..1

1
owner

0..*
accounts

{context Bank
inv: accounts->forAll(a | a.owner = self)

{inv: bal >= 0}

{pre: bal + n >= 0
post: bal = bal@pre + n       and
         history.oclIsNew()        and
         history.bal = bal@pre  and
        history.prev = history@pre}

Hubert



Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev
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Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev
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Example

LibraryApp::addMedium(Medium m)
pre: adminLoggedIn
post: medium = medium@pre->including(m) and

medium.library = this

LibraryApp::search(String string) : List<Medium>
post: result = medium->select(m |

m.title.contains(string) or
m.autor.contains(string) or
m.signature.contains(string))

medium = medium@pre

User::borrowMedium(Medium m)
pre: borrowedMedium->size < 10

and m != null
and not(borrowedMedium->exists(m’ | m’.isOverdue))

post: m.borrowDate = libApp.getDate() and
borrowedMedium = borrowedMedium@pre->including(m)

Hubert



Implementing DbC with assertions

I Many languages have an assert construct. In Java:
assert bexp; or assert bexp:string;

I Contract for Counter::dec(i:int)
Pre: i > 0
Post: i = i@pre − 1

void dec() {
assert i > 0 : "Precondition violated"; // Precondition
int iatpre = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == iatpre-1 : "Postcondtion violated"; // Postcondition

}

I assert and assertTrue are not the same!

Hubert



Implementing DbC in Java
Pre: args 6= null and args.length > 0
Post: ∀n ∈ args : min ≤ n ≤ max

public class MinMax {
int min, max;

public void minmax(int[] args) throws Error {
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; i < args.length; i++) {
int obs = args[i];
if (obs > max)
max = obs;

else if (min < obs)
min = obs;

}
assert isBetweenMinMax(args);

}

private boolean isBetweenMinMax(int[] array) {
boolean result = true;
for (int n : array) {
result = result && (min <= n && n <= max);

}
return result;

}



Important
I Assertion checking is switched off by default in Java

1) Use java -ea Main to enable assertion checking
2) In Eclipse



Assertions

I Advantage
I Postcondition is checked for each computation
I Precondition is checked for each computation

I Disadvantage
I Checking that a postcondition is satisfied can take as much

time as computing the result
→ Performace problems
I Solution:

I Assertion checking is switched on during developing,
debugging and testing and switched off in production
systems



Assertion vs. Tests

I Assertion
I Checks all computations (as long as assertion checking is

switched on)
I Checks also for contract violations from the client (i.e.

precondition violations)
I Tests

I Only checks test cases (concrete values)
I Cannot check that the clients establish the precondition



Contracts and inheritance

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}



Contracts and Inheritance

Liskov / Wing Substitution principle:
At every place, where one can use objects of the superclass C,
one can use objects of the subclass D

public T n(C c)
...
// n has to ensure PreˆC_m
c.m();
// n can rely on PostˆC_m
...

t .n(new C()) vs. t .n(new D()).
→ PreC

m =⇒ PreD
m weaken precondition

→ PostD
m =⇒ PostC

m strengthen
postcondition

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}



Invariants: Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv:  i >= 0}

{context Counter :: inc ( ) 
post: i = i@pre + 1}

{context Counter :: dec ( ) 
pre: i > 0 
post: i = i@pre - 1  }

I Methods
I assume that invariant holds
I ensure invariants

I When does an invariant hold?
I After construction
I After each public method



Invariants

I Contstructor has to ensure invariant
public Counter() {

i = 0;
assert i >= 0; // Invariant

}

I Operations ensure and assume invariant
void dec() {

assert i >= 0; // Invariant
assert i > 0; // Precondition
int iatpre = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == iatpre-1; // Postcondition
assert i >= 0; // Invariant

}



Defensive Programming

I Can one trust the client to ensure the precondition?
void dec() { i--; }

I Depends if the programmer controls the client or not
I e.g. if dec is private, only the programmer of the method

can call dec
I if dec is publick, potentially others can call the method



Defensive Programming

I If one does not trust the client
I Check explicitly that the precondition of a method is

satisfied
I Either

void dec() { if (i > 0) { i--; } }
I Or

void dec() {
if (i <= 0) {

throw new Exception("Dec not allowed ...");
}
i--;

}

I Don’t rely on the assert statement.
I Why?
void dec() {

assert i <= 0;
i--;

}



Defensive Programming

I Use defensive programming with public methods
I Use asserts with private or package private methods
I For example public method of a library

PublicClass

+ n

PackagePrivateClass

m
Client

Framework

I Public method of a class in the application/domain layer

ApplicationClass

+ n

GUIClass

ApplicationLayer

PresentationLayer1 PresentationLayer2

GUIClass



Next week

I Principles of Good Design
I Design Patterns
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