
Software Engineering I (02161)
Week 10

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

Last Week

I Layered Architecture: Persistent Layer
I Software Development Processes

I Waterfall
I (Rational) Unified Process
I Agile Processes: User story driven, travel light, Agile

Manifesto

Contents

Software Development Process

Project planning

Design by Contract (DbC)

eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.

Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia

I Robert Martin (Uncle Bob) about ”The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
→ History about agile methods, the agile manifesto, and

Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk

Lean Software Development

I Lean Production:
I Reduce the amount of waste in the production process
I Generate flow

I Waste: resources used which do not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .

Hubert

Cycle time

Cycle time
Time it takes to go through the process one time

cycle time =
number of features

feature implemantion rate

I Example: Waterfall
I Batch size = number of features in an iteration
I Software: 250 features, feature implementation rate = 5

features/week
I cycle time = 250 f / (5 f/w) = 50 weeks
I Overall time: 50 weeks
→ 1 cycle

Hubert

Goal: Reducing the cycle time

I Reduce batch size: 1 feature in an iteration
I Software: 250 features, feature implementation rate = 5

features/week

cycle time =
number of features

feature implemantion rate

I Agile: cycle time = 1 f / (5 f/w) = 1/5 week = 1 day = 8 h
→ 250 cycles
I Advantages

I Process adapts to changes in requirements
I Process improvements and fine tuning

Hubert

Generating flow using Pull and Kanban

WIP = Work in Progress Limit

1
324

A T IWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

8

7

9

10

5

6

Blah
Composite

Leaf Assembly4 2 3

3 3 3 3

Hubert

Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net
Hubert

Online Kanban Tool: Trello

I www.trello.com: Electronic Kanban board useful for
your project

I Example Kanban board https:
//trello.com/b/4wddd1zf/kanban-workflow

www.trello.com
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow

Contents

Software Development Process

Project planning

Design by Contract (DbC)

Project Planning

I Project plan
I Defines:

I How work is done
I Estimate

I Duration of work
I Needed resources
→ Price

I Project planning
I Proposal stage
→ Price
→ Time to finish

I Project start-up
→ Staffing, . . .

I During the project
I Progress (tracking)
I Adapt to changes

Hubert

Planning Agile Projects

I fixed general structure
→ e.g. quarterly cycle / weekly cycle practices in XP / sprints

in Scrum

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I time boxing
I fixed: release dates and iterations
I adjustable: scope

I Planning: Which user story in which iteration / release

Hubert

Planning game

I Goal of the game:
I List of prioritized user stories

I Customer defines:
I user stories
I priorities

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story

Hubert

Scrump/XP: Project estimation and monitoring

I Estimation: two possibilities
1) Estimate ideal time (e.g. person days / week) * load factor
2) Estimate relative to other user stories: story points

I Monitoring
ad 1) New load factor : total iteration time / user story time

finished
ad 2) velocity : Number of points per iteration

→ What can be done in the next iteration
I Yesterdays weather: Calculate velocity/load factor based

on the last iteration only
I Important: If in trouble focus on few stories and finish them

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Lean / Kanban: User story estimation

I No ”iterations”: user stories come in and flow through the
system

→ Only a rough estimation of the size of the user stories
I try to level the size of the user stories
I Divide larger into smaller ones

I Measure process parameters, e.g., average cycle time
I E.g. ”After committing to a user story, it takes in average a

week to have the user story finished”
I User average cycle time and WIP (Work In Progress) Limit

to determine the capacity of the process and thus
throughput

Hubert

Hubert

Hubert

Hubert

Hubert

Example of a Kanban board for the exam project

I https://trello.com/b/iO29C07w/02161-example

https://trello.com/b/iO29C07w/02161-example
Hubert

Contents

Software Development Process

Project planning

Design by Contract (DbC)
Contracts
Implementing DbC in Java
Assertion vs Tests
Inheritance
Invariants
Defensive Programming

What does this function do?

public List<Integer> f(List<Integer> list) {
if (list.size() <= 1) return list;

int p = list.elementAt(0);

List<Integer> l1 = new ArrayList<Integer>();
List<Integer> l2 = new ArrayList<Integer>();
List<Integer> l3 = new ArrayList<Integer>();

g(p,list,l1,l2,l3);

List<Integer> r = f(l1);

r.addAll(l2);
r.addAll(f(l3));

return r;
}

public void g(int p, List<Integer> list,
List<Integer> l1, List<Integer> l2, List<Integer> l3) {

for (int i : list) {
if (i < p) l1.add(i);
if (i == p) l3.add(i);
if (i > p) l2.add(i);

}
}

Hubert

What does this function do?

public void testEmpy() {
int[] a = {};
List<Integer> r = f(Array.asList(a));
assertTrue(r.isEmpty());

}

public void testOneElement() {
int[] a = { 3 };
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(3),r);

}

public void testTwoElements() {
int[] a = {2, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2),r);

}

public void testThreeElements() {
int[] a = {2, 3, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2,3),r);

}
...

Hubert

What does this function do?

List<Integer> f(List<Integer> a)

Precondition: a is not null
Postcondition: For all result ,a ∈ List<Integer>:
result == f (a)
if and only if

isSorted(result) and sameElements(a,result)
where

isSorted(a) if and only if
for all 0 ≤ i , j < a.size():

i ≤ j implies a.get(i) ≤ a.get(j)

and
sameElements(a,b) if and only if

for all i ∈ Integer : count(a, i) = count(b, i)

Hubert

Example Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv: i >= 0}

{context Counter :: inc ()
post: i = i@pre + 1}

{context Counter :: dec ()
pre: i > 0
post: i = i@pre - 1 }

public T n(T1 a1, .., Tn an, Counter c)
...
// Here the precondition of c has to hold
// to fulfil the contract of Counter::dec
c.dec();
// Before returning from dec, c has to ensure the
// postcondition of dec
...

Hubert

Hubert

Hubert

Hubert

Hubert

Design by contract
I Name invented by Bertrand Meyer (Eiffel programming

language) for pre-/post-condition based formal methods
applied to object-oriented designs/languages

I Pre-/post-conditions were invented by Tony Hoare and
Rober W. Floyd

Contract for a method
I precondition: a boolean expression over the state of the

object and arguments before the execution of the method
I postcondition: a boolean expression over the state of the

object and arguments before the execution of a method
and the result of the method and the state of the object
after the execution of the method

Contract between Caller and the Method
I Caller ensures precondition
I Method ensures postcondition

I Contracts specify what instead of how

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Bank example with constraints

Bank

Account

update(n : int) : void

bal : int

History

History() : void

bal : int

0..1

prev

1

1

0..1

1
owner

0..*
accounts

{context Bank
inv: accounts->forAll(a | a.owner = self)

{inv: bal >= 0}

{pre: bal + n >= 0
post: bal = bal@pre + n and
 history.oclIsNew() and
 history.bal = bal@pre and
 history.prev = history@pre}

Hubert

Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev

Hubert

Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev

Hubert

Example

LibraryApp::addMedium(Medium m)
pre: adminLoggedIn
post: medium = medium@pre->including(m) and

medium.library = this

LibraryApp::search(String string) : List<Medium>
post: result = medium->select(m |

m.title.contains(string) or
m.autor.contains(string) or
m.signature.contains(string))

medium = medium@pre

User::borrowMedium(Medium m)
pre: borrowedMedium->size < 10

and m != null
and not(borrowedMedium->exists(m’ | m’.isOverdue))

post: m.borrowDate = libApp.getDate() and
borrowedMedium = borrowedMedium@pre->including(m)

Hubert

Implementing DbC with assertions

I Many languages have an assert construct. In Java:
assert bexp; or assert bexp:string;

I Contract for Counter::dec(i:int)
Pre: i > 0
Post: i = i@pre − 1

void dec() {
assert i > 0 : "Precondition violated"; // Precondition
int iatpre = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == iatpre-1 : "Postcondtion violated"; // Postcondition

}

I assert and assertTrue are not the same!

Hubert

Implementing DbC in Java
Pre: args 6= null and args.length > 0
Post: ∀n ∈ args : min ≤ n ≤ max

public class MinMax {
int min, max;

public void minmax(int[] args) throws Error {
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; i < args.length; i++) {
int obs = args[i];
if (obs > max)
max = obs;

else if (min < obs)
min = obs;

}
assert isBetweenMinMax(args);

}

private boolean isBetweenMinMax(int[] array) {
boolean result = true;
for (int n : array) {
result = result && (min <= n && n <= max);

}
return result;

}

Important
I Assertion checking is switched off by default in Java

1) Use java -ea Main to enable assertion checking
2) In Eclipse

Assertions

I Advantage
I Postcondition is checked for each computation
I Precondition is checked for each computation

I Disadvantage
I Checking that a postcondition is satisfied can take as much

time as computing the result
→ Performace problems
I Solution:

I Assertion checking is switched on during developing,
debugging and testing and switched off in production
systems

Assertion vs. Tests

I Assertion
I Checks all computations (as long as assertion checking is

switched on)
I Checks also for contract violations from the client (i.e.

precondition violations)
I Tests

I Only checks test cases (concrete values)
I Cannot check that the clients establish the precondition

Contracts and inheritance

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}

Contracts and Inheritance

Liskov / Wing Substitution principle:
At every place, where one can use objects of the superclass C,
one can use objects of the subclass D

public T n(C c)
...
// n has to ensure PreˆC_m
c.m();
// n can rely on PostˆC_m
...

t .n(new C()) vs. t .n(new D()).
→ PreC

m =⇒ PreD
m weaken precondition

→ PostD
m =⇒ PostC

m strengthen
postcondition

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}

Invariants: Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv: i >= 0}

{context Counter :: inc ()
post: i = i@pre + 1}

{context Counter :: dec ()
pre: i > 0
post: i = i@pre - 1 }

I Methods
I assume that invariant holds
I ensure invariants

I When does an invariant hold?
I After construction
I After each public method

Invariants

I Contstructor has to ensure invariant
public Counter() {

i = 0;
assert i >= 0; // Invariant

}

I Operations ensure and assume invariant
void dec() {

assert i >= 0; // Invariant
assert i > 0; // Precondition
int iatpre = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == iatpre-1; // Postcondition
assert i >= 0; // Invariant

}

Defensive Programming

I Can one trust the client to ensure the precondition?
void dec() { i--; }

I Depends if the programmer controls the client or not
I e.g. if dec is private, only the programmer of the method

can call dec
I if dec is publick, potentially others can call the method

Defensive Programming

I If one does not trust the client
I Check explicitly that the precondition of a method is

satisfied
I Either

void dec() { if (i > 0) { i--; } }
I Or

void dec() {
if (i <= 0) {

throw new Exception("Dec not allowed ...");
}
i--;

}

I Don’t rely on the assert statement.
I Why?
void dec() {

assert i <= 0;
i--;

}

Defensive Programming

I Use defensive programming with public methods
I Use asserts with private or package private methods
I For example public method of a library

PublicClass

+ n

PackagePrivateClass

m
Client

Framework

I Public method of a class in the application/domain layer

ApplicationClass

+ n

GUIClass

ApplicationLayer

PresentationLayer1 PresentationLayer2

GUIClass

Next week

I Principles of Good Design
I Design Patterns

	Software Development Process
	Project planning
	Design by Contract (DbC)
	Contracts
	Implementing DbC in Java
	Assertion vs Tests
	Inheritance
	Invariants
	Defensive Programming

