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Recap

I Previously
I Design: From requirements to design, class diagrams,

sequence diagrams, low coupling and high cohesion:
layered architecture basics

I Last Week
I Version Control
I State machines: UML Behaviour diagram
I Layered Architecture: Presentation Layer

I This week
I Layered Architecture: Persistency Layer
I Software Development Processes / Project Planning
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Layered Architecture: Persistency Layer for the library
application

Address

PersistencyLayer PersistentObject

CdBook
User

Medium
LibraryApp

LibraryUI

Application/Domain Layer

Presentation Layer

Persistency Layer

I Data stored in two files users.txt
& media.txt; address has no file

I A book
dtu.library.app.Book
b01
some book author
some book title
Mar 13, 2011
<empty line>

I A user
dtu.library.app.User
cpr-number
Some Name
a@b.dk
Kongevejen
2120
Hellerup
b01
c01
<empty line>
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Persistency Layer

{
  return getCprNumber();
}

{
  return getSignature();
}

Medium
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
       ol:PersistencyLayer)

PersistentObject

storeOn(out:PrintWriter)
getKey():String

User
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
       ol:PersistencyLayer)

PersistencyLayer
...
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

LibraryApp

*borrowedMedia

key:String
0..1cache_media

key:String
0..1cache_users

     1
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Layered Architecture: Persistency Layer for the library
application

PersistencyLayer
cache_users
cache_medium
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

I clearDatabase:removes the text files
to create an empty database. Used
with tests in @Before methods:
Independent tests

I createMedium/User: appends a new
record to the corresponding file

I updateMedium/User: copy all entries
in a new file; replace the old entry
with the new entry on copying

I deleteMedium/User: do the same as
updateMedium/User, but don’t copy
the object to be deleted

→ What is the complexity of
createMedium/User,
readMedium/User,
updateMedium/User,
deleteMedium/User?
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Reading/Writing User and Media objects

Book

...

Cd

...

PersistentObject

read(r:BufferedReader,
     pl:PersistencyLayer):P.Obj.
readFromReader(r:BufferedReader,
     pl:PersistencyLayer):P.Obj.
storeOn(out:PrintWriter)
getKey():String

Medium
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
       ol:PersistencyLayer)

User
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
       ol:PersistencyLayer)

*borrowedMedia

Hubert



Reading User and Media objects

public class PersistentObject {
...
public static PersistentObject read(BufferedReader in,

PersistencyLayer pl) throws IOException {
String type = in.readLine();
PersistentObject po = null;
po = (PersistentObject) Class.forName(type).newInstance();
return po.readFromRader(pl, reader);

}
...

}

I Delegate the initialization of the created object to the newly
created object
→ No access to the instance variables of the object
→ The object knows best which data it needs

PersistentObject po = new User();
po.readFromReader(pl,in);

I instead of
PersistentObject po = new User();
po.cprNumber(in.readLine());
po.name(in.readLine());
...
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Class User

public class User {
...
public void readFromReader(PersistencyLayer pl, BufferedReader in)

throws IOException {
cprNumber = in.readLine(); name = in.readLine();
email = in.readLine();
address = Address.readFrom(in);
borrowedMedia = new ArrayList<Medium>();
String signature = in.readLine();
while (!signature.isEmpty()) {
borrowedMedia.add(pl.readMedium(signature));
signature = in.readLine();

}
}

}

dtu.library.app.User
cpr-number
Some Name
a@b.dk
Kongevejen
2120
Hellerup
b01
c01
<empty line>
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Use of Files

Writing files

FileWriter fw = new FileWriter(filename, true);
// true = append; false = replace

PrintWriter out = new PrintWriter(fw);
out.println("Some line");
out.print("Some string without new line");

Reading files

FileReader fr = new FileReader(filename);
BufferedReader in = new BufferedReader(fr);
String line - in.readLine();

Deleting and renaming files

File f = new File(filename);
f.delete();
f.renameTo(new File(new_filename));
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Tests for the integration

@Before
public void setUp() throws Exception {

libApp = new LibraryApp();
PersistencyLayer.clearDatabase();
libApp.adminLogin("adminadmin");
Address address = new Address("Kongevejen", 2120, "Hellerupl");
user = new User("cpr-number", "Some Name", "a@b.dk", address);
libApp.register(user);
b = new Book("b01", "some book title", "some book author");
c = new Cd("c01", "some cd title", "some cd author");
libApp.addMedium(b);
libApp.addMedium(c);

}

@Test
public void testBorrowing() throws Exception {

user.borrowMedium(b);
user.borrowMedium(c);
PersistencyLayer pl = new PersistencyLayer();
User user1 = pl.readUser(user.getCprNumber());
assertEquals(2, user1.getBorrowedMedia().size());
Utilities.compareUsers(user, user1);

}
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Implementation in LibraryApp

public void borrowMedium(Medium medium) throws BorrowException {
if (medium == null)
return;

if (borrowedMedia.size() >= 10) {
throw new TooManyBooksException();

}
for (Medium mdm : borrowedMedia) {
if (mdm.isOverdue()) {
throw new HasOverdueMedia();

}
}
medium.setBorrowDate(libApp.getDate());
borrowedMedia.add(medium);
try {
libApp.getPersistencyLayer().updateUser(this);

} catch (IOException e) {
throw new Error(e);

}
}
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Issues: Object identity

PersistencyLayer pl = new PersistencyLayer();
User user1 = pl.readUser("12345");
User user2 = pl.readUser("12345");

Which assertion is true?

assertNotSame(user1,user2)
assertSame(user1,user2)
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Solution: Qualified Associations / Maps

Map<String,PersitentObject> cacheUsers =
new HashMap()<String,PersistentObject>

Map<String,PersitentObject> cacheMedia =
new HashMap()<String,PersistentObject>

UML Notation

PersistencyLayer
...
...

PersistentObject

storeOn(out:PrintWriter)
getKey():String

key:String
0..1cache_users

key:String
0..1cache_media

public User readUser(String key) {
if (cacheUsers.contains(key)) { return cacheUsers.get(key); }
User user = readUserFromFile(String key);
if (user != null) { cacheUsers.put(key,user); }
return user;

}
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Qualified Assocations I

I A qualified association is an association, where an object is
associated to another object via a qualifier (a third object)

I An Order has an OrderItem for each product
I If the multiplicity is ≤ 1 then an order has at most one list

item for each product
→ This is usually implemented by a map or dictionary

mapping products to order items

public class Order {
private Map<Product,OrderItem>

listItem = new HashMap<Product,OrderItem>()
...

}
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Qualified Associations II

I If the multiplicity is *, then several order items may be
associated to a product

I Then the map has to return a collection for each product

public class Order {
private Map<Product,Collection<OrderItem>>

listItems = new HashMap<Product,Collection<OrderItem>>()
...

}
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Map<K,V> Interface

I Dictionary (table): keys of type K , values of type V
I Implementation class: HashMap<K,V>
I Operations

I m.put(aK,aV)
I m.get(aK)
I m.containsKey(aK)

I Properties
I aK is not a key in m

assertFalse(m.containsKey(aK));
assertNull(m.get(aK));

I Value aV is added with key aK to m
m.put(aK,aV);
assertTrue(m.containsKey(aK));
assertSame(aV,m.get(aK));
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Programming exercise 6:

1) Implement the persistency layer (tests provided)
2) Intergrate persistentcy layer in the library application (tests

have to be written)
I Additional information
http://www2.imm.dtu.dk/courses/02161/2017/
slides/pe_persistency.pdf

I Solution: http://www2.imm.dtu.dk/courses/
02161/2017/files/library07_solution.zip

http://www2.imm.dtu.dk/courses/02161/2017/slides/pe_persistency.pdf
http://www2.imm.dtu.dk/courses/02161/2017/slides/pe_persistency.pdf
http://www2.imm.dtu.dk/courses/02161/2017/files/library07_solution.zip
http://www2.imm.dtu.dk/courses/02161/2017/files/library07_solution.zip
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Software Development Challenges

I Challenges of Software Development
I On time
I In budget
I No defects
I Customer satisfaction
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Software Development Process

I Activities in Software Development
I Understand and document what the customer wants:

Requirements Engineering
I How to build the software: Design
I Build the software: Implementation
I Validate: Testing, Verification, Evaluation

→ Set of techniques: Use cases, CRC cards, refactoring,
test-driven development, . . .

I How to apply the techniques:
→ Different software development processes: Waterfall,

Iterative processes, agile, lean, . . .



Waterfall process

I 1970: Used by Winston W. Royce in a article as a an
example of how not to develop software

I 1985: Waterfall was required by the United States
Department of Defence from its contractors
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Delays in waterfall processes

D I TA

Features

Release date Time
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Iterative Processes: E.g. (Rational) Unified Process
(1996)
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Agile Software Development Methods (1999)
I Extreme Programming (XP) (1999), Scrum (1995–2001),

Feature Driven Development (FDD) (1999), Lean Software
Development (2003), . . .

I Kanban (2010): often seen as a method, but it is a tool to
improve processes and is to be used with the other
processes

I Based on the Agile Manifesto (2001)

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

I Highest priority user story
first

I If delayed: important features
are implemented
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Manifesto for Agile Software Development (2001)

”We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

I Individuals and interactions over processes and tools
I Working software over comprehensive documentation
I Customer collaboration over contract negotiation
I Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”
http://www.agilemanifesto.org

http://www.agilemanifesto.org
Hubert

Hubert

Hubert

Hubert

Hubert



Resource Triangle

I Can only fix two of them at the same time



Resource Triangle: Waterfall

D I TA

Features

Release date Time
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Resource Triangle: Agile

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story
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eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.
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Sit-together

Kent Beck, Extreme Programming 2nd ed.
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Visual wall

Kent Beck, Extreme Programming 2nd ed.



Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia

I Robert Martin (Uncle Bob) about ”The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
→ History about agile methods, the agile manifesto, and

Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk
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Lean Software Development

I Lean Production:
I Reduce the amount of waste in the production process
I Generate flow

I Waste: resources used which do not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .



Cycle time

Cycle time
Time it takes to go through the process one time

cycle time =
number of features

feature implemantion rate

I Example: Waterfall
I Batch size = number of features in an iteration
I Software: 250 features, feature implementation rate = 5

features/week
I cycle time = 250 f / (5 f/w) = 50 weeks
I Overall time: 50 weeks
→ 1 cycle



Goal: Reducing the cycle time

I Reduce batch size: 1 feature in an iteration
I Software: 250 features, feature implementation rate = 5

features/week

cycle time =
number of features

feature implemantion rate

I Agile: cycle time = 1 f / (5 f/w) = 1/5 week = 1 day = 8 h
→ 250 cycles
I Advantages

I Process adapts to changes in requirements
I Process improvements and fine tuning



Generating flow using Pull and Kanban

WIP = Work in Progress Limit

1
324

A T IWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

8

7

9

10

5

6

Blah
Composite

Leaf Assembly4 2 3

3 3 3 3



Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net


Online Kanban Tool: Trello

I www.trello.com: Electronic Kanban board useful for
your project

I Example Kanban board https:
//trello.com/b/4wddd1zf/kanban-workflow

www.trello.com
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow
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Project Planning

I Project plan
I Defines:

I How work is done
I Estimate

I Duration of work
I Needed resources
→ Price

I Project planning
I Proposal stage

→ Price
→ Time to finish

I Project start-up
→ Staffing, . . .

I During the project
I Progress (tracking)
I Adapt to changes



Planning Agile Projects

I fixed general structure
→ quarterly cycle / weekly cycle practices in XP / sprints in

Scrum

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I time boxing
I fixed: release dates and iterations
I adjustable: scope

I Planning: Which user story in which iteration / release



Planning game

I Customer defines:
I user stories
I priorities

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story



Scrum/XP: User story estimation (based on ideal time)

I Estimation
I Estimate ideal time (e.g. person days / week) to finish a

user story
I real time = ideal time * load factor (e.g. load factor = 2)
I Add user stories to an iteration based on real time and

priority
I Monitoring

I New load factor : total iteration time / user story time
finished

→ What can be done in the next iteration
I Yesterdays weather

I only take load factor from the last iteration for planning the
next iteration

I Important: If in trouble focus on few stories and finish them
→ Don’t let deadlines slip (time boxing)



Scrum/XP: User story estimation (based on points)

I Estimation
I Estimate user stories relative to other user stories:

story points
I velocity : number of story points that can be done in an

iteration (initial value is a guess or comes from previous
processes)

I In an iteration: Select up to velocity amount of user stories
I Monitoring

I new velocity : story points of finished user stories per
iteration

→ What can be done in the next iteration
I user stories with story points up to new velocity



Lean / Kanban: User story estimation

I No ”iterations”: user stories come in and flow through the
system

→ Only a rough estimation of the size of the user stories
I try to level the size of the user stories
I Divide larger into smaller ones

I Measure process parameters, e.g., average cycle time
I E.g. ”After committing to a user story, it takes in average a

week to have the user story finished”
I User average cycle time and WIP (Work In Progress) Limit

to determine the capacity of the process and thus
throughput



Example of a Kanban board for the exam project

I https://trello.com/b/iO29C07w/02161-example

https://trello.com/b/iO29C07w/02161-example


Next week

I Design by contract
I Basic principles of good design
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