
Software Engineering I (02161)
Week 9: Layered Architecture Persistency Layer; Software

Development Process

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

Recap

I Previously
I Design: From requirements to design, class diagrams,

sequence diagrams, low coupling and high cohesion:
layered architecture basics

I Last Week
I Version Control
I State machines: UML Behaviour diagram
I Layered Architecture: Presentation Layer

I This week
I Layered Architecture: Persistency Layer
I Software Development Processes / Project Planning

Hubert

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning

Layered Architecture: Persistency Layer for the library
application

Address

PersistencyLayer PersistentObject

CdBook
User

Medium
LibraryApp

LibraryUI

Application/Domain Layer

Presentation Layer

Persistency Layer

I Data stored in two files users.txt
& media.txt; address has no file

I A book
dtu.library.app.Book
b01
some book author
some book title
Mar 13, 2011
<empty line>

I A user
dtu.library.app.User
cpr-number
Some Name
a@b.dk
Kongevejen
2120
Hellerup
b01
c01
<empty line>

Hubert

Hubert

Persistency Layer

{
 return getCprNumber();
}

{
 return getSignature();
}

Medium
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

PersistentObject

storeOn(out:PrintWriter)
getKey():String

User
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

PersistencyLayer
...
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

LibraryApp

*borrowedMedia

key:String
0..1cache_media

key:String
0..1cache_users

 1

Hubert

Hubert

Layered Architecture: Persistency Layer for the library
application

PersistencyLayer
cache_users
cache_medium
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

I clearDatabase:removes the text files
to create an empty database. Used
with tests in @Before methods:
Independent tests

I createMedium/User: appends a new
record to the corresponding file

I updateMedium/User: copy all entries
in a new file; replace the old entry
with the new entry on copying

I deleteMedium/User: do the same as
updateMedium/User, but don’t copy
the object to be deleted

→ What is the complexity of
createMedium/User,
readMedium/User,
updateMedium/User,
deleteMedium/User?

Hubert

Hubert

Reading/Writing User and Media objects

Book

...

Cd

...

PersistentObject

read(r:BufferedReader,
 pl:PersistencyLayer):P.Obj.
readFromReader(r:BufferedReader,
 pl:PersistencyLayer):P.Obj.
storeOn(out:PrintWriter)
getKey():String

Medium
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

User
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

*borrowedMedia

Hubert

Reading User and Media objects

public class PersistentObject {
...
public static PersistentObject read(BufferedReader in,

PersistencyLayer pl) throws IOException {
String type = in.readLine();
PersistentObject po = null;
po = (PersistentObject) Class.forName(type).newInstance();
return po.readFromRader(pl, reader);

}
...

}

I Delegate the initialization of the created object to the newly
created object
→ No access to the instance variables of the object
→ The object knows best which data it needs

PersistentObject po = new User();
po.readFromReader(pl,in);

I instead of
PersistentObject po = new User();
po.cprNumber(in.readLine());
po.name(in.readLine());
...

Hubert

Hubert

Class User

public class User {
...
public void readFromReader(PersistencyLayer pl, BufferedReader in)

throws IOException {
cprNumber = in.readLine(); name = in.readLine();
email = in.readLine();
address = Address.readFrom(in);
borrowedMedia = new ArrayList<Medium>();
String signature = in.readLine();
while (!signature.isEmpty()) {
borrowedMedia.add(pl.readMedium(signature));
signature = in.readLine();

}
}

}

dtu.library.app.User
cpr-number
Some Name
a@b.dk
Kongevejen
2120
Hellerup
b01
c01
<empty line>

Hubert

Use of Files

Writing files

FileWriter fw = new FileWriter(filename, true);
// true = append; false = replace

PrintWriter out = new PrintWriter(fw);
out.println("Some line");
out.print("Some string without new line");

Reading files

FileReader fr = new FileReader(filename);
BufferedReader in = new BufferedReader(fr);
String line - in.readLine();

Deleting and renaming files

File f = new File(filename);
f.delete();
f.renameTo(new File(new_filename));

Hubert

Tests for the integration

@Before
public void setUp() throws Exception {

libApp = new LibraryApp();
PersistencyLayer.clearDatabase();
libApp.adminLogin("adminadmin");
Address address = new Address("Kongevejen", 2120, "Hellerupl");
user = new User("cpr-number", "Some Name", "a@b.dk", address);
libApp.register(user);
b = new Book("b01", "some book title", "some book author");
c = new Cd("c01", "some cd title", "some cd author");
libApp.addMedium(b);
libApp.addMedium(c);

}

@Test
public void testBorrowing() throws Exception {

user.borrowMedium(b);
user.borrowMedium(c);
PersistencyLayer pl = new PersistencyLayer();
User user1 = pl.readUser(user.getCprNumber());
assertEquals(2, user1.getBorrowedMedia().size());
Utilities.compareUsers(user, user1);

}

Hubert

Hubert

Hubert

Implementation in LibraryApp

public void borrowMedium(Medium medium) throws BorrowException {
if (medium == null)
return;

if (borrowedMedia.size() >= 10) {
throw new TooManyBooksException();

}
for (Medium mdm : borrowedMedia) {
if (mdm.isOverdue()) {
throw new HasOverdueMedia();

}
}
medium.setBorrowDate(libApp.getDate());
borrowedMedia.add(medium);
try {
libApp.getPersistencyLayer().updateUser(this);

} catch (IOException e) {
throw new Error(e);

}
}

Hubert

Hubert

Issues: Object identity

PersistencyLayer pl = new PersistencyLayer();
User user1 = pl.readUser("12345");
User user2 = pl.readUser("12345");

Which assertion is true?

assertNotSame(user1,user2)
assertSame(user1,user2)

Hubert

Solution: Qualified Associations / Maps

Map<String,PersitentObject> cacheUsers =
new HashMap()<String,PersistentObject>

Map<String,PersitentObject> cacheMedia =
new HashMap()<String,PersistentObject>

UML Notation

PersistencyLayer
...
...

PersistentObject

storeOn(out:PrintWriter)
getKey():String

key:String
0..1cache_users

key:String
0..1cache_media

public User readUser(String key) {
if (cacheUsers.contains(key)) { return cacheUsers.get(key); }
User user = readUserFromFile(String key);
if (user != null) { cacheUsers.put(key,user); }
return user;

}

Hubert

Qualified Assocations I

I A qualified association is an association, where an object is
associated to another object via a qualifier (a third object)

I An Order has an OrderItem for each product
I If the multiplicity is ≤ 1 then an order has at most one list

item for each product
→ This is usually implemented by a map or dictionary

mapping products to order items

public class Order {
private Map<Product,OrderItem>

listItem = new HashMap<Product,OrderItem>()
...

}

Hubert

Hubert

Hubert

Qualified Associations II

I If the multiplicity is *, then several order items may be
associated to a product

I Then the map has to return a collection for each product

public class Order {
private Map<Product,Collection<OrderItem>>

listItems = new HashMap<Product,Collection<OrderItem>>()
...

}

Hubert

Hubert

Map<K,V> Interface

I Dictionary (table): keys of type K , values of type V
I Implementation class: HashMap<K,V>
I Operations

I m.put(aK,aV)
I m.get(aK)
I m.containsKey(aK)

I Properties
I aK is not a key in m

assertFalse(m.containsKey(aK));
assertNull(m.get(aK));

I Value aV is added with key aK to m
m.put(aK,aV);
assertTrue(m.containsKey(aK));
assertSame(aV,m.get(aK));

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Programming exercise 6:

1) Implement the persistency layer (tests provided)
2) Intergrate persistentcy layer in the library application (tests

have to be written)
I Additional information
http://www2.imm.dtu.dk/courses/02161/2017/
slides/pe_persistency.pdf

I Solution: http://www2.imm.dtu.dk/courses/
02161/2017/files/library07_solution.zip

http://www2.imm.dtu.dk/courses/02161/2017/slides/pe_persistency.pdf
http://www2.imm.dtu.dk/courses/02161/2017/slides/pe_persistency.pdf
http://www2.imm.dtu.dk/courses/02161/2017/files/library07_solution.zip
http://www2.imm.dtu.dk/courses/02161/2017/files/library07_solution.zip

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning

Software Development Challenges

I Challenges of Software Development
I On time
I In budget
I No defects
I Customer satisfaction

Hubert

Software Development Process

I Activities in Software Development
I Understand and document what the customer wants:

Requirements Engineering
I How to build the software: Design
I Build the software: Implementation
I Validate: Testing, Verification, Evaluation

→ Set of techniques: Use cases, CRC cards, refactoring,
test-driven development, . . .

I How to apply the techniques:
→ Different software development processes: Waterfall,

Iterative processes, agile, lean, . . .

Waterfall process

I 1970: Used by Winston W. Royce in a article as a an
example of how not to develop software

I 1985: Waterfall was required by the United States
Department of Defence from its contractors

Hubert

Delays in waterfall processes

D I TA

Features

Release date Time

Hubert

Iterative Processes: E.g. (Rational) Unified Process
(1996)

Hubert

Agile Software Development Methods (1999)
I Extreme Programming (XP) (1999), Scrum (1995–2001),

Feature Driven Development (FDD) (1999), Lean Software
Development (2003), . . .

I Kanban (2010): often seen as a method, but it is a tool to
improve processes and is to be used with the other
processes

I Based on the Agile Manifesto (2001)

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

I Highest priority user story
first

I If delayed: important features
are implemented

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Manifesto for Agile Software Development (2001)

”We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

I Individuals and interactions over processes and tools
I Working software over comprehensive documentation
I Customer collaboration over contract negotiation
I Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”
http://www.agilemanifesto.org

http://www.agilemanifesto.org
Hubert

Hubert

Hubert

Hubert

Hubert

Resource Triangle

I Can only fix two of them at the same time

Resource Triangle: Waterfall

D I TA

Features

Release date Time

Hubert

Resource Triangle: Agile

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

Hubert

eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.

Hubert

Sit-together

Kent Beck, Extreme Programming 2nd ed.

Hubert

Visual wall

Kent Beck, Extreme Programming 2nd ed.

Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia

I Robert Martin (Uncle Bob) about ”The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
→ History about agile methods, the agile manifesto, and

Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk
Hubert

Lean Software Development

I Lean Production:
I Reduce the amount of waste in the production process
I Generate flow

I Waste: resources used which do not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .

Cycle time

Cycle time
Time it takes to go through the process one time

cycle time =
number of features

feature implemantion rate

I Example: Waterfall
I Batch size = number of features in an iteration
I Software: 250 features, feature implementation rate = 5

features/week
I cycle time = 250 f / (5 f/w) = 50 weeks
I Overall time: 50 weeks
→ 1 cycle

Goal: Reducing the cycle time

I Reduce batch size: 1 feature in an iteration
I Software: 250 features, feature implementation rate = 5

features/week

cycle time =
number of features

feature implemantion rate

I Agile: cycle time = 1 f / (5 f/w) = 1/5 week = 1 day = 8 h
→ 250 cycles
I Advantages

I Process adapts to changes in requirements
I Process improvements and fine tuning

Generating flow using Pull and Kanban

WIP = Work in Progress Limit

1
324

A T IWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

8

7

9

10

5

6

Blah
Composite

Leaf Assembly4 2 3

3 3 3 3

Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net

Online Kanban Tool: Trello

I www.trello.com: Electronic Kanban board useful for
your project

I Example Kanban board https:
//trello.com/b/4wddd1zf/kanban-workflow

www.trello.com
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning

Project Planning

I Project plan
I Defines:

I How work is done
I Estimate

I Duration of work
I Needed resources
→ Price

I Project planning
I Proposal stage

→ Price
→ Time to finish

I Project start-up
→ Staffing, . . .

I During the project
I Progress (tracking)
I Adapt to changes

Planning Agile Projects

I fixed general structure
→ quarterly cycle / weekly cycle practices in XP / sprints in

Scrum

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I time boxing
I fixed: release dates and iterations
I adjustable: scope

I Planning: Which user story in which iteration / release

Planning game

I Customer defines:
I user stories
I priorities

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story

Scrum/XP: User story estimation (based on ideal time)

I Estimation
I Estimate ideal time (e.g. person days / week) to finish a

user story
I real time = ideal time * load factor (e.g. load factor = 2)
I Add user stories to an iteration based on real time and

priority
I Monitoring

I New load factor : total iteration time / user story time
finished

→ What can be done in the next iteration
I Yesterdays weather

I only take load factor from the last iteration for planning the
next iteration

I Important: If in trouble focus on few stories and finish them
→ Don’t let deadlines slip (time boxing)

Scrum/XP: User story estimation (based on points)

I Estimation
I Estimate user stories relative to other user stories:

story points
I velocity : number of story points that can be done in an

iteration (initial value is a guess or comes from previous
processes)

I In an iteration: Select up to velocity amount of user stories
I Monitoring

I new velocity : story points of finished user stories per
iteration

→ What can be done in the next iteration
I user stories with story points up to new velocity

Lean / Kanban: User story estimation

I No ”iterations”: user stories come in and flow through the
system

→ Only a rough estimation of the size of the user stories
I try to level the size of the user stories
I Divide larger into smaller ones

I Measure process parameters, e.g., average cycle time
I E.g. ”After committing to a user story, it takes in average a

week to have the user story finished”
I User average cycle time and WIP (Work In Progress) Limit

to determine the capacity of the process and thus
throughput

Example of a Kanban board for the exam project

I https://trello.com/b/iO29C07w/02161-example

https://trello.com/b/iO29C07w/02161-example

Next week

I Design by contract
I Basic principles of good design

	Layered Architecture: Persistence Layer
	Software Development Process
	Project planning

