
Software Engineering I (02161)
Week 8

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017



Recap

I Last week
I Sequence diagrams
I Centralized vs. Decentralized Control
I How to implement associations from class diagrams
I Layered architecture: basics

I This week
I Version control
I State machines
I Layered architecture: Presentation layer

I Next week
I Layered architecture: Persistency layer
I Software development processes
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What is version control?

Version Control
I Stores and manages snapshots of project files (e.g. .java

files)
I Manages concurrent work on project files
I Various systems: Git, Concurrent Versions System (CVS),

Subversion (SVN), Team Foundation Server (TFS) . . .
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Git
I Developed by Linus Torvalds for use with Linux
I Set of ommand line tools, IDE support
I Set of files are collected into ”snapshots” called commits

I Commits have one or more parents and describe the
difference to their parents

I Names of commits are SHA1 hashes of their contents
usually identified by the first 7 characters in hex
representation
63d281344071f3ae1054bca63f1117f76a3d5751 and
63d2813

I Branches: Two commits for the same parent
I Merging: Merging the changes of two commits into one
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Git

I Distributed repository
I Commits stored in the local repository

I Local repository can be synchronized with one or may
remote repositories

! Push (local ! remote) and Pull (remote ! local)
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Starting with a project
1 Create a central repository:
http://repos.gbar.dtu.dk

2 Create an initial project with one of the team members in
Eclipse

3 Create a local repository for the project: Use Team::Share
Project

http://repos.gbar.dtu.dk
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Starting with a project
3 Create a local repository for the project: Use Team::Share

Project



Starting with a project

4 Attach the central repository as a remote repository to your
local repository
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Starting with a project

5 Stage, commit, and push the initial commit to the remote
repository: Team:Push upstream / Push upstream master
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Starting with a project

6 Other members: clone the repository from the central
repository: Git repository view
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Starting with a project

6 Other members: clone the repository from the central
repository: Git repository view
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Starting with a project

7 Other members: Import the Eclipse project: Git repository
view
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Storage of the Eclipse project

I Option one: In the Eclipse workspace
I Option two: In a special Git repository directory
! Use project properties to find out
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Working with Git
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Working with Git

1 Pull the latest changes from the central repository
2 Work on a user story with commits to the local repository

as necessary (Team::Commit)
3 Once the user story is done (all tests are green) stage and

commit the result
4 Before pushing your commits first pull all commits done in

the meantime by others from the central repository
! this will merge their commits with the local ones and create

a new merged commit

5 Fix any merge conflicts until all tests are green again
6 push your final commit to the central repository

Important: Never push a commit where the tests are failing



When Pushing commits fail

I Pushing fails if someone else as pushed his commits
before: No fast-forward merge possible

1 pull from central repository
I this automatically tries to merge the changes,

2 compile: fix possible compilation errors
3 run the tests: fix failing tests
4 commit and push again



Merge conflicts when pulling

I Git is in a merge state
1 Resolve conflicts
2 Stage your changes
3 Commit and push changes

Hubert



Git resources

I Git is more complex than shown: e.g. we didn’t cover
branching (not really needed for the project though)

I Git tutorial
https://www.sbf5.com/˜cduan/technical/git/

I Git Book: https://git-scm.com/book/en/v2

https://www.sbf5.com/~cduan/technical/git/
Hubert
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UML State Machines

I UML structure diagrams
I e.g. class diagram

I UML behaviour diagrams
I Activity diagrams:Focus is on activities
I Sequence diagrams: Focus is message exchange between

objects
I State machine: Focus is on states and events

I How does the system react when an event occurs?
! Automata



Example Vending Machine

I Events
I Input coins
I Press button for

bananas or apples
I Press cancel

I Displays
I current amount of

money input
I Effects (Actions the

machine performs)
I Return money
I Dispense banana or

apple



UML State Machines

I Easy to check for completeness: Does every state
implement a reaction to every event?

I Easy to describe behavior: finite number of events and
states

! Good for this type of situations. For example, embedded
systems
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Example: Safe

I Task: Implement a control panel for a safe in a dungeon
I The lock should be visible only when a candle has been

removed
I The safe door opens only when the key is turned after the

candle has been replaced again
I If the key is turned without replacing the candle, a killer

rabbit is released
<<enumera t i on>>

State
wai t
open
lock
finalState

SecurePanelController
candleRemoved
keyTurned
safeClosed
openSafe
revealLock
releaseKillerRabbit

currentState
1
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Example: Safe
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Transitions

I General form

target statesource state trigger [guard]/effect

I Triggers (events, method calls)
I Guard: boolean expression
I Effect: a statement
I Fireing a transition

I trigger + guard is true then the effect is executed



Exercise

I Create a state machine for a counter object. A counter has
two operations (= events): inc and dec and an attribute c
that is never allowed to go below 0.

I Inc increments c by 1
I Dec decrements c by 1, but if c is 0, it does not do

anything.

{ i nv :  i  >=  0 }Counter
c : int
inc()
dec()



The state machine for the counter
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Implementation 1: Class diagram

<<enumera t i on>>
State

wai t
open
lock
finalState

<<enumera t i on>>
Event

candleRemoved
keyTurned
openSafe
revealLock
releaseKillerRabbit

SecretPanelController
currentState
handleEvent

    currentState
1
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Implementation 1
public class SecretPanelController {
enum State = { wait, lock, open, finalState };
enum Event = { candelRemoved, keyTurned, openSafe,

revealLock, releaseKillerRabit };
private State state = States.wait;
public void handleEvent (Event anEvent) {

switch (currentState) {
case open :
switch (anEvent) {

case safeClosed :
CurrentState = state.wait;
break;

}
break;

case wait :
switch (anEvent) {

case candleRemoved :
if (isDoorOpen) {

RevealLock();
currentState = state.lock;

}
break;

}
break;

case lock :
switch (anEvent) {...}
break;

}
}

}
}

Hubert


Hubert


Hubert


Hubert


Hubert


Hubert


Hubert


Hubert


Hubert


Hubert


Hubert




Implementation 2: Class diagram

<<enumera t i on>>
State

wai t
open
lock
finalState

SecurePanelController
candleRemoved
keyTurned
safeClosed
openSafe
revealLock
releaseKillerRabbit

currentState
1
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Implementation 2
public class SecretPanelController {

enum State { wait, lock, open, finalState };
State state = State.wait;

public void candleRemoved() {
switch (state) {
case wait:

if (doorClosed()) {
state = states.lock;
break;

}
}

}

public void keyTurned() {
switch (state) {
case lock:

if (candleOut()) {
state = states.open;

} else
{

state = states.finalState;
releaseRabbit();

}
break;

}
} ... }
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Implementation 3: Using the state pattern
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State Pattern

State Pattern
”Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.” Design Pattern book

*

State
request1
request2

AClass
request1
request2
...
changeState

State1
request1
request2

State2
request1
request2

sd:  StatePattern
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Vending machine Implementation

Uses the state pattern

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()
~setIdleState()
~dispense(f: Fruit)
~setCurrentStateForFruit(f: Fruit)
~hasFruit(f: Fruit)

1

«interface»
VendingMachineState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

IdleState
input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

FruitSelectionState
input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

1

*

m.setCurrentMoney(m.getCurrentMoney() + i);

if (!m.hasFruit(fruit)) {
   m.setIdleState();
   return;
}
if (m.hasEnoughMoneyFor(fruit)) {
   m.setIdleState();
   m.dispense(fruit);
}  e l se  {
   m.setCurrentStateForFruit(fruit);
}

m.dispense(null);

super.input(m, i);
if (m.hasEnoughMoneyFor(selectedFruit)) {
   m.setIdleState();
   m.dispense(selectedFruit);
}

m.setIdleState();
super.cancel(m);

Hubert



Sub states

I Substates help structure complex state diagrams (similar
to subroutines)
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Next week

I Layered architecture: persistency layer
I Software Development Processes
I Project Planning
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Library Application: Text based UI

User Screen
0) Exit
1) Login as administrator

1

Login Screen

password
adminadmin

Logged in.

Admin Screen
0) Logoff

0
Logged off.
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Example Library Application

Login Screen
login

[pw correct]/print "Logged in"                                                        

[pw incorrect]/print "Login failed"

User Screen

                                          logoff/print "Logged off"

Admin Screen

exit

Offers the menu for
- managing users
- managing media
- logof f

Offers the menu for
- login as admin
- borrowing and returning media
- searching for media
- exiting the application

[wrong selection]/print "Wrong selection"                                                                
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Library App: Focus on user dialog

Use state UserDialog to group the user screen activities

Login Screen
login

[pw correct]/print "Logged in"                                                        

[pw incorrect]/print "Login failed"

User Screen

                                          logoff/print "Logged off"
Admin Dialog

exit

[wrong selection]/print "Wrong selection"                                                                

User dialog
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Library App: Overview

Focus on the sequence of dialogs instead of screens

[pw correct]/print "Logged in"                                                        logoff/print "Logged off"

Admin Dialog

exit
User dialog



Library App: Focus on admin dialog

Use state AdminDialog to group the admin screen activities
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Library App UI: State Pattern

{abstract}
Screen

printMenu
processInput
...?

LibraryApp

LibraryUI
printMenu
processInput
readInput
setScreen
basicLoop
main
...

AdminScreen
printMenu
processInput
...?

10..1

UserScreen
printMenu
processInput
...?      1

       *
LoginScreen

printMenu
processInput
...?

{screen.processInput();}

{screen.printMenu();}
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Library App: main application
public static void main(String[] args) throws IOException {

BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));

PrintWriter out = new PrintWriter(System.out, true);
LibraryUI ui = new LibraryUI();
ui.basicLoop(in, out);

}

Basic loop
public void basicLoop(BufferedReader in, PrintWriter out)

throws IOException {
String selection;
do {
printMenu(out);
selection = readInput(in);

} while (!processInput(selection, out));
}

public void printMenu(PrintWriter out) throws IOException {
screen.printMenu(out);

}

public boolean processInput(String input, PrintWriter out)
throws IOException {

return screen.processInput(input,out);
}
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Library App user interface exercise (programming
exercise 5)

1) Given tests for the functionality login; implement the tests
using the state pattern

2) Design, test, and implement the remaining functionality of
the library application
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