
Software Engineering I (02161)
Week 8

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

Recap

I Last week
I Sequence diagrams
I Centralized vs. Decentralized Control
I How to implement associations from class diagrams
I Layered architecture: basics

I This week
I Version control
I State machines
I Layered architecture: Presentation layer

I Next week
I Layered architecture: Persistency layer
I Software development processes

Hubert

Contents

Version control

State machines

Library Application and UI

What is version control?

Version Control
I Stores and manages snapshots of project files (e.g. .java

files)
I Manages concurrent work on project files
I Various systems: Git, Concurrent Versions System (CVS),

Subversion (SVN), Team Foundation Server (TFS) . . .

Hubert

Git
I Developed by Linus Torvalds for use with Linux
I Set of ommand line tools, IDE support
I Set of files are collected into ”snapshots” called commits

I Commits have one or more parents and describe the
difference to their parents

I Names of commits are SHA1 hashes of their contents
usually identified by the first 7 characters in hex
representation
63d281344071f3ae1054bca63f1117f76a3d5751 and
63d2813

I Branches: Two commits for the same parent
I Merging: Merging the changes of two commits into one

Hubert

Hubert

Hubert

Git

I Distributed repository
I Commits stored in the local repository

I Local repository can be synchronized with one or may
remote repositories

! Push (local ! remote) and Pull (remote ! local)

Hubert

Hubert

Starting with a project
1 Create a central repository:
http://repos.gbar.dtu.dk

2 Create an initial project with one of the team members in
Eclipse

3 Create a local repository for the project: Use Team::Share
Project

http://repos.gbar.dtu.dk
Hubert

Hubert

Starting with a project
3 Create a local repository for the project: Use Team::Share

Project

Starting with a project

4 Attach the central repository as a remote repository to your
local repository

Hubert

Starting with a project

5 Stage, commit, and push the initial commit to the remote
repository: Team:Push upstream / Push upstream master

Hubert

Starting with a project

6 Other members: clone the repository from the central
repository: Git repository view

Hubert

Starting with a project

6 Other members: clone the repository from the central
repository: Git repository view

Hubert

Starting with a project

7 Other members: Import the Eclipse project: Git repository
view

Hubert

Storage of the Eclipse project

I Option one: In the Eclipse workspace
I Option two: In a special Git repository directory
! Use project properties to find out

Hubert

Working with Git

Hubert

Hubert

Working with Git

1 Pull the latest changes from the central repository
2 Work on a user story with commits to the local repository

as necessary (Team::Commit)
3 Once the user story is done (all tests are green) stage and

commit the result
4 Before pushing your commits first pull all commits done in

the meantime by others from the central repository
! this will merge their commits with the local ones and create

a new merged commit

5 Fix any merge conflicts until all tests are green again
6 push your final commit to the central repository

Important: Never push a commit where the tests are failing

When Pushing commits fail

I Pushing fails if someone else as pushed his commits
before: No fast-forward merge possible

1 pull from central repository
I this automatically tries to merge the changes,

2 compile: fix possible compilation errors
3 run the tests: fix failing tests
4 commit and push again

Merge conflicts when pulling

I Git is in a merge state
1 Resolve conflicts
2 Stage your changes
3 Commit and push changes

Hubert

Git resources

I Git is more complex than shown: e.g. we didn’t cover
branching (not really needed for the project though)

I Git tutorial
https://www.sbf5.com/˜cduan/technical/git/

I Git Book: https://git-scm.com/book/en/v2

https://www.sbf5.com/~cduan/technical/git/
Hubert

https://git-scm.com/book/en/v2

Contents

Version control

State machines

Library Application and UI

UML State Machines

I UML structure diagrams
I e.g. class diagram

I UML behaviour diagrams
I Activity diagrams:Focus is on activities
I Sequence diagrams: Focus is message exchange between

objects
I State machine: Focus is on states and events

I How does the system react when an event occurs?
! Automata

Example Vending Machine

I Events
I Input coins
I Press button for

bananas or apples
I Press cancel

I Displays
I current amount of

money input
I Effects (Actions the

machine performs)
I Return money
I Dispense banana or

apple

UML State Machines

I Easy to check for completeness: Does every state
implement a reaction to every event?

I Easy to describe behavior: finite number of events and
states

! Good for this type of situations. For example, embedded
systems

Hubert

Example: Safe

I Task: Implement a control panel for a safe in a dungeon
I The lock should be visible only when a candle has been

removed
I The safe door opens only when the key is turned after the

candle has been replaced again
I If the key is turned without replacing the candle, a killer

rabbit is released
<<enumera t i on>>

State
wai t
open
lock
finalState

SecurePanelController
candleRemoved
keyTurned
safeClosed
openSafe
revealLock
releaseKillerRabbit

currentState
1

Hubert

Example: Safe

Hubert

Hubert

Transitions

I General form

target statesource state trigger [guard]/effect

I Triggers (events, method calls)
I Guard: boolean expression
I Effect: a statement
I Fireing a transition

I trigger + guard is true then the effect is executed

Exercise

I Create a state machine for a counter object. A counter has
two operations (= events): inc and dec and an attribute c
that is never allowed to go below 0.

I Inc increments c by 1
I Dec decrements c by 1, but if c is 0, it does not do

anything.

{ i nv : i >= 0 }Counter
c : int
inc()
dec()

The state machine for the counter

Hubert

Hubert

Hubert

Implementation 1: Class diagram

<<enumera t i on>>
State

wai t
open
lock
finalState

<<enumera t i on>>
Event

candleRemoved
keyTurned
openSafe
revealLock
releaseKillerRabbit

SecretPanelController
currentState
handleEvent

 currentState
1

Hubert

Hubert

Hubert

Hubert

Hubert

Implementation 1
public class SecretPanelController {
enum State = { wait, lock, open, finalState };
enum Event = { candelRemoved, keyTurned, openSafe,

revealLock, releaseKillerRabit };
private State state = States.wait;
public void handleEvent (Event anEvent) {

switch (currentState) {
case open :
switch (anEvent) {

case safeClosed :
CurrentState = state.wait;
break;

}
break;

case wait :
switch (anEvent) {

case candleRemoved :
if (isDoorOpen) {

RevealLock();
currentState = state.lock;

}
break;

}
break;

case lock :
switch (anEvent) {...}
break;

}
}

}
}

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Implementation 2: Class diagram

<<enumera t i on>>
State

wai t
open
lock
finalState

SecurePanelController
candleRemoved
keyTurned
safeClosed
openSafe
revealLock
releaseKillerRabbit

currentState
1

Hubert

Hubert

Hubert

Hubert

Implementation 2
public class SecretPanelController {

enum State { wait, lock, open, finalState };
State state = State.wait;

public void candleRemoved() {
switch (state) {
case wait:

if (doorClosed()) {
state = states.lock;
break;

}
}

}

public void keyTurned() {
switch (state) {
case lock:

if (candleOut()) {
state = states.open;

} else
{

state = states.finalState;
releaseRabbit();

}
break;

}
} ... }

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Implementation 3: Using the state pattern

Hubert

Hubert

State Pattern

State Pattern
”Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.” Design Pattern book

*

State
request1
request2

AClass
request1
request2
...
changeState

State1
request1
request2

State2
request1
request2

sd: StatePattern

Hubert

Vending machine Implementation

Uses the state pattern

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()
~setIdleState()
~dispense(f: Fruit)
~setCurrentStateForFruit(f: Fruit)
~hasFruit(f: Fruit)

1

«interface»
VendingMachineState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

IdleState
input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

FruitSelectionState
input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

1

*

m.setCurrentMoney(m.getCurrentMoney() + i);

if (!m.hasFruit(fruit)) {
 m.setIdleState();
 return;
}
if (m.hasEnoughMoneyFor(fruit)) {
 m.setIdleState();
 m.dispense(fruit);
} e l se {
 m.setCurrentStateForFruit(fruit);
}

m.dispense(null);

super.input(m, i);
if (m.hasEnoughMoneyFor(selectedFruit)) {
 m.setIdleState();
 m.dispense(selectedFruit);
}

m.setIdleState();
super.cancel(m);

Hubert

Sub states

I Substates help structure complex state diagrams (similar
to subroutines)

Hubert

Next week

I Layered architecture: persistency layer
I Software Development Processes
I Project Planning

Contents

Version control

State machines

Library Application and UI

Library Application: Text based UI

User Screen
0) Exit
1) Login as administrator

1

Login Screen

password
adminadmin

Logged in.

Admin Screen
0) Logoff

0
Logged off.

Hubert

Example Library Application

Login Screen
login

[pw correct]/print "Logged in"

[pw incorrect]/print "Login failed"

User Screen

 logoff/print "Logged off"

Admin Screen

exit

Offers the menu for
- managing users
- managing media
- logof f

Offers the menu for
- login as admin
- borrowing and returning media
- searching for media
- exiting the application

[wrong selection]/print "Wrong selection"

Hubert

Library App: Focus on user dialog

Use state UserDialog to group the user screen activities

Login Screen
login

[pw correct]/print "Logged in"

[pw incorrect]/print "Login failed"

User Screen

 logoff/print "Logged off"
Admin Dialog

exit

[wrong selection]/print "Wrong selection"

User dialog

Hubert

Library App: Overview

Focus on the sequence of dialogs instead of screens

[pw correct]/print "Logged in" logoff/print "Logged off"

Admin Dialog

exit
User dialog

Library App: Focus on admin dialog

Use state AdminDialog to group the admin screen activities

Hubert

Library App UI: State Pattern

{abstract}
Screen

printMenu
processInput
...?

LibraryApp

LibraryUI
printMenu
processInput
readInput
setScreen
basicLoop
main
...

AdminScreen
printMenu
processInput
...?

10..1

UserScreen
printMenu
processInput
...? 1

 *
LoginScreen

printMenu
processInput
...?

{screen.processInput();}

{screen.printMenu();}

Hubert

Library App: main application
public static void main(String[] args) throws IOException {

BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));

PrintWriter out = new PrintWriter(System.out, true);
LibraryUI ui = new LibraryUI();
ui.basicLoop(in, out);

}

Basic loop
public void basicLoop(BufferedReader in, PrintWriter out)

throws IOException {
String selection;
do {
printMenu(out);
selection = readInput(in);

} while (!processInput(selection, out));
}

public void printMenu(PrintWriter out) throws IOException {
screen.printMenu(out);

}

public boolean processInput(String input, PrintWriter out)
throws IOException {

return screen.processInput(input,out);
}

Hubert

Library App user interface exercise (programming
exercise 5)

1) Given tests for the functionality login; implement the tests
using the state pattern

2) Design, test, and implement the remaining functionality of
the library application

	Version control
	State machines
	Library Application and UI

