
Software Engineering I (02161)
Week 6: Design 1: CRC cards, class– and sequence

diagram

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

Contents

Midterm evaluation

Recap

From Requirements to Design: CRC Cards

Class Diagrams I

Sequence Diagrams I

Project

Midterm evaluation

I Majority has decided to keep the time of the lecture from
15:00–17:00 (45% keep / 33% change / 24% okay with
both)

I Course focuses on Java and object-oriented software
I Non-programming homework intended to be done after

the lecture at home and not before
I Assignments

I Programming exercises: not mandatory latest DL for
feedback 19.3

I Non-programming exercises: not mandatory latest DL for
feedback 19.3

I Examination project: mandatory assignments week 8 and
week 13

I Need your help
I How can I make the lecture more exciting?
I How can I improve the Web site?

Contents

Midterm evaluation

Recap

From Requirements to Design: CRC Cards

Class Diagrams I

Sequence Diagrams I

Project

Recap

I week 1–3: Requirements
I week 3-5: Tests

I week 5: Systematic tests and code coverage
I week 6-8: Design
I week >8: Implementation

Contents

Midterm evaluation

Recap

From Requirements to Design: CRC Cards

Class Diagrams I

Sequence Diagrams I

Project

From Requirements to Design

Design process (abstract)

1 Choose a set of user stories to implement
2 Select the user story with the highest priority

a Design the system by executing the user story in your head
→ e.g. use CRC cards for this

b Extend an existing class diagram with classes, attributes,
and methods

c Create acceptance tests
d Implement the user story test-driven, creating tests as

necessary and guided by your design

3 Repeat step 2 with the user story with the next highest
priority

Introduction CRC Cards

I Class Responsibility Collaboration
I Developed in the 80’s
I Used to

I Analyse a problem domain
I Discover object-oriented design
I Teach object-oriented design

I Object-oriented design:
I Objects have state and behaviour
I Objects delegate responsibilities
I ”Think objects”

Hubert

CRC Card Template

A larger example
I http://c2.com/doc/crc/draw.html

http://c2.com/doc/crc/draw.html

Process

I Basic: Simulate the execution of use case scenarios / user
stories

I Steps
1. Brainstorm classes/objects/components
2. Assign classes/objects/components to persons (group up to

6 people)
4. Execute the scenarios one by one

a) add new classes/objects/components as needed
b) add new responsibilities
c) delegate to other classes / persons

Library Example: Use Case Diagram

User

LibrarySystem

check out book

return book

search for book

Library Example: Detailed Use Case Check Out Book

I Name: Check Out Book
I Description: The user checks out a book from the library
I Actor: User
I Main scenario:

1 A user presents a book for check-out at the check-out
counter

2 The system registers the loan
I Alternative scenarios:

I The user already has 5 books borrowed
2a The system denies the loan

I The user has one overdue book
2b The system denies the loan

Example II

I Set of initial CRC cards: Librarien, Borrower, Book
I Use case Check out book main scenario (user story)

I ”What happens when Barbara Stewart, who has no
accrued fines and one outstanding book, not overdue,
checks out a book entitled Effective C++ Strategies+?”

Hubert

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: CRC cards

Library Example: All CRC cards

Process: Next Steps

I Review the result
I Group cards
I Check cards
I Refactor

I Transfer the result
I Either implement the user story based on the set of cards
I Or create UML model documenting your design

Example: Class Diagram (so far)

0..1 *

Borrower

canBorrow

Book

isOverdue
checkOut(b:Borrower)
calculateDueDate

Librarien

checkOutBook(b:Book)

Date

compare(d:Date)

* *

0..1 dueDate

Hubert

Example: Sequence Diagram for Check-out book

 Check Out Book Realization

Hubert

Alternative

I Build class and sequence diagrams directly
I Danger: talk about the system instead of being part of the

system
I Possible when object-oriented principles have been learned
I CRC cards help with object-oriented thinking

Exercise: Detailed Use Case Return Book

I Name: Return Book
I Description: The user retuns a book he had checked-out

to the library
I Actor: User
I Precondition The book is checked-out by the user
I Main scenario:

1 A user presents the book for check-in at the check-in
counter

2 The system registers that the book has been returned
I Alternative scenarios:

I The book is overdue
2a The system calculates the fine and sends a bill to the

customer
2b The system registers the return of the book

Hubert

Exercise: Previous set of CRC cards

Hubert

Contents

Midterm evaluation

Recap

From Requirements to Design: CRC Cards

Class Diagrams I

Sequence Diagrams I

Project

UML

I Unified Modelling Language (UML)
I Set of graphical notations: class diagrams, state machines,

sequence diagrams, activity diagrams, . . .
I Developed in the 90’s
I ISO standard

Class Diagram

I Structure diagram of object oriented systems
I Possible level of details

Domain Modelling : typically low level of detail
...

Implementation : typically high level of detail

I Purpose:
I Docmenting the domain
I Documenting the design of a system
I A language to talk about designs with other programmers

Why a graphical notation?

public class Assembly
extends Component {

public double cost() { }
public void add(Component c) {}
private Collection<Component>

components;
}

public class CatalogueEntry {
private String name = "";
public String getName() {}
private long number;
public long getNumber() {}
private double cost;
public double getCost() {}
}

public abstract class Component {
public abstract double cost();
}

public class Part extends Component {
private CatalogueEntry entry;
public CatalogueEntry getEntry() {}
public double cost(){}
public Part(CatalogueEntry entry){}

Why a graphical notation?

Class Diagram Example

LibraryMember

MemberOfStaff Journal

Copy
signature
isOverdue

Book
tit le
author
publisher
edition

0..* 1
copy of

0..1 0..5
borrows

0..1 0..5
borrows

Hubert

General correspondence between Classes and
Programs

«Stereotype»
PackageName::ClassName

{Some Propert ies}

+name1 : String = "abc"
name2 : OtherClass[*]
-name3 : int {read only}
#name4 : boolean

-f1(a1:int, a2:String[]) : float
+f2(x1:String,x2:boolean) : float
f4(a:double)
#f3(a:double) : String

package packagename
public class ClassName
{

private String name1 = "abc";
public List<OtherClass> name2 = new ArrayList<OtherClass>();
private int name3;
protected static boolean navn3;

private static float f1(int a1, String[] a2) { ... }
public void f2(String x1, boolean x2) { ... }
abstract public void f4(a:double);
protected String f3(double a) { ... }

}

Hubert

Class Diagram and Program Code

public class C {
private int a;
public int getA() { return a; }
public void setA(int a) { this.a = a; }

}

Hubert

Hubert

Class Diagram and Program Code

public class C {
private int a;
public int getA() { return a; }
public void setA(int a) { this.a = a; }

}

Generalization / Inheritance

I Programming languages like Java: Inheritance
abstract public class Medium { ... }
public class Book extends Medium { ... }
public class Cd extends Medium { ... }

I UML: Generalization / Specialization

Book

Book(String,String,String)
int fine
int maxBorrowInDays

{abstract}
Medium

String signature
String title
String author
Calendar borrowDate
Medium(String,String,String)
int fine
int maxBorrowInDays
boolean isOverdue
boolean isBorrowed

Cd

Cd(String,String,String)
int fine
int maxBorrowInDays

fine and maxBorrowInDays
are abstract in Medium and
defined differently in Book and Cd.
For Book we have 20 DKK and 28 days,
while for CD we have 40 DKK fine
and max days for borrowing is 7.

Generalisation Example

Book

Book(String,String,String)
int fine
int maxBorrowInDays

{abstract}
Medium

String signature
String title
String author
Calendar borrowDate
Medium(String,String,String)
int fine
int maxBorrowInDays
boolean isOverdue
boolean isBorrowed

Cd

Cd(String,String,String)
int fine
int maxBorrowInDays

fine and maxBorrowInDays
are abstract in Medium and
defined differently in Book and Cd.
For Book we have 20 DKK and 28 days,
while for CD we have 40 DKK fine
and max days for borrowing is 7.

Liskov-Wing Substitution Principle
”If S is a subtype of T, then objects of type T in a program
may be replaced with objects of type S without altering any
of the desirable properties of that program (e.g.,
correctness).”

Hubert

Appletree

Apple
Tree

Apple tree

Hubert

Associations between classes

I Unidirectional (association can be navigated in one
direction)

* employee 0..1
works for CompanyPerson

I Company has a field employees

public class Person
{

....
}

public class Company
{

private Set<Person> employees;
....

}

Hubert

Associations between classes

I Bidirectional (association can be navigated in both
directions)

* employee 0..1
works for CompanyPerson

public class Person
{

private Company company;
public getCompany() {
return company;

}
public setCompany(Company c) {
company = c;

}
....

}

public class Company
{

private Set<Person> employees;
....

}

I Bidirectional or no explicit navigability
I no explicit navigability ≡ no fields

* employee 0..1
works for CompanyPerson

Hubert

Attributes and Associations
public class Order {
private Date date;
private boolean isPrepaid = false;
private List<OrderLine> lineItems =
new ArrayList<OrderLine)();

...
}

Order

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
lineItems: OrderLine[*]

OrderLine
*1

lineItems

Hubert

Attributes and Associations
public class Order {
private Date date;
private boolean isPrepaid = false;
private List<OrderLine> lineItems =
new ArrayList<OrderLine)();

...
}

Order

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
lineItems: OrderLine[*]

OrderLine
*1

lineItems

Hubert

Contents

Midterm evaluation

Recap

From Requirements to Design: CRC Cards

Class Diagrams I

Sequence Diagrams I

Project

Sequence Diagram: Computing the price of an order

I Class diagram

 1

1*

Customer
name : string
address : Address
getDiscountedValue(order : Order) : double

Order
baseValue : double
calculatePrice() : double

Product
price
getPrice(quantity : int) : double

OrderLine
quantity : int
calculatePrice() : double

I Problem:
I What are the operations doing?

Sequence diagram

Arrow types

return

sync call

async call

b:Ba:A

Usages of sequence diagrams

I Show the exchange of messages of a system
I i.e. show the execution of the system
I in general only, one scenario
I with the help of interaction frames also several scenarios

I For example use sequence diagrams for
I Designing (c.f. CRC cards)
I Visualizing program behaviour

Contents

Midterm evaluation

Recap

From Requirements to Design: CRC Cards

Class Diagrams I

Sequence Diagrams I

Project

Course 02161 Exam Project

I Week 6 (this week) – 8:
I Requirements: Glossary, use case diagram, detailed use

cases for selected use cases
I Models: Class diagram plus sequence diagrams for

previously selected detailed use cases
I Week 8—13:

I Implementation
I Systematic tests and design by contract

I Week 13:
I 10 min demonstrations of the software are planned for

Monday
→ The tests need to be demonstrated

Introduction to the project
I What is the problem?

I Design and implement a project planning and time
recording system

I UI required, but not a graphical UI; database / persistency
layer is not required

I Deliver
I Week 8: report describing the requirement specification

and design (mandatory; contributes to the final grade)
I 18.3.: First draft of the impementation and tests (not

mandatory; won’t be graded but you will get feedback)
I Week 13:

I report on the implementation and tests (mandatory;
contributes to the final grade)

I Standalone Eclipse project containing the source code, the
tests, and the running program (uploaded to CampusNet as
a ZIP file that can be imported in Eclipse) (mandatory
contributes to the final grade)

I demonstration in front of TA’s (participation mandatory;
does not contribute to final grade)

I More detail on CampusNet

Hubert

Organisational issues

I Group size: 2 – 4
I Report can be written in Danish or English
I Program written in Java and tests use JUnit
I Each section, diagram, etc. needs to name the author who

made the section, diagram, etc.
I You can talk with other groups (or previous students

that have taken the course) on the assignment, but it is
not allowed to copy from others parts of the report or
the program.

I Any copying of text without naming the sources is viewed
as cheating

I In case of questions with the project description send email
to huba@dtu.dk

huba@dtu.dk

Week 6–8: Requirements and Design

Recommended (but not mandatory) Design process

1 Create glossary, use cases, and domain model
2 Create user stories based on use case scenarios
3 Create a set of initial classes based on the domain model
→ initial design

3 Take one user story
a) Design the system by executing the user story in your head

→ e.g. using CRC cards

b) Extend the existing class diagram with classes, attributes,
and methods

c) Document the scenario using a sequence diagram (only if
needed to document the execution)

3 Repeat step 2 with the other user stories

Apply the Pareto principle: 20% of the work gives 80%: Include
the important details but don’t try to make your model perfect.

Learning objectives of Week 6—8

I Learn to think abstractly about object-oriented programs
I Using programming language independent concepts

I Learn how to communicate requirements and design
I Requirements are read by the customer but also by the

programmers
I Have a language to talk with fellow programmers about

design issues (class and sequence diagrams)
I I don’t expect you to create perfect models

I It is perfectly okay if your final implementation does not
match your model

I By comparing your model with your final implementation,
you learn about the relationship between modelling and
programming

Hubert

Week 8—13

Recommended (but not mandatory) Implementation
process

1 Choose a set of user stories to implement
1 Select the user story with the highest priority

a) Create the acceptance test for the story in JUnit
b) Implement the user story test-driven, creating additional

tests as necessary, guided by your design
→ based on the classes, attributes, and methods of the model
→ implement only the classes, attributes, and methods needed

to implement the user story
→ Criteria: ideally 100% code coverage of the business logic

(i.e. application layer) based on the tests you have

3 Repeat step 2 with the user story with the next highest
priority

Grading

I The project will be graded as a whole
→ no separate grades for the models, report, and the

implementation
I Evaluation criteria

I In general: correct use and understanding of the
techniques introduced in the course

I Implementation: good architecture (e.g. use of layered
architecture), understandable code and easy to read (e.g.
short methods, self documenting method names and
variable names, use of abstraction)

I Rather focus on a subset of the functionality with good code
quality than on having everything implemented but with bad
code quality

	Midterm evaluation
	Recap
	From Requirements to Design: CRC Cards
	Class Diagrams I
	Sequence Diagrams I
	Project

