Software Engineering | (02161)
Week 3

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

=
—
=

i

Contents

Programming Tips and Tricks
Booleans
Constants
Delegation

Requirements
Testing

Summary

Booleans

lszdeau exp.

f—7 < ~
if ("adminadmin".equals (password)) {
adminLoggedIn = true;

} else {
adminLoggedIn = false;
}

Hubert

Booleans

Deu 't \‘C()@»‘“
{ves ffalee = QJ'-‘A|.IJ(QSKQJI"‘ t\waﬂr@‘S ’D@\/

if ("adminadmin".equals (password)) {
adminLoggedIn = b&ue;% &
} else {
adminLoggedIn = false; <
}

Don’t use conditionals to set a boolean variable
» Better

adminLoggedIn = "adminadmin".equals (password) ; V//

Hubert

Booleans

if (!adminLoggedIn ——fmr)
throw new OperationNotAllowedException();
} else {
: if—admdnloggedta——TTUs) books.add (book) ;

Hubert

Booleans

if (adminLoggedIn == false) {
throw new OperationNotAllowedException();
} else {
if (adminLoggedIn == true) books.add (book);

}

Use boolean variables directly; don’t compare boolean
variables with true or false

» Better
if ('adminLoggedIn) {

throw new OperationNotAllowedException () ;
} se {

books.add (book) ;
}

or

if ('adminLoggedIn) {
throw new OperationNotAllowedException () ;

}
\ books.add (book) ;

Hubert

Use constants instead of literals

public boolean login(String password) {
adminLoggedIn = fadminadmip.equals (password);

b Shrag ORY

Hubert

Use constants instead of literals

public boolean login(String password) {

adminLoggedIn = "adminadmin".equals (password);
}
static final String ADMIN_PASSWORD = "adminadmin";
e —

public boolean login(String password) {
adminLoggedIn = ADMIN_PASSWORD.equals (password) ;

}

v

Put the constant in the class where it belongs conceptually

» Gives the constant a meaning: ADMIN_PASSWORD vs
"adminadmin”, MAX_NUMBER_OF _LOANED BOOKS vs 5

» Don’t repeat yourself (DRY): avoids several occurences of
the same constant, e.g. 5

» Naming convention: All uppercase with underscore
separating words (inherited from C)

Hubert

Hubert

Hubert

Delegate Responsibility

» Original

public List<Book> search(String string) {
List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

ifT(book.getSignature () .contains (string)| ||
book.getTitle () .contains (string) ||
book

getAuthor () .contains(string))
booksFound.add (book) ; Z’
5

}
J ——;7CdAOﬁus(Enba éﬂJ(

return booksFound; e\ a < I
: lakuek v Skrig St)

(_,((_ L\XNV A .
b e coaedacs (St shoig)
(L clesg Bool.

Hubert

Delegate Responsibility

» LibraryApp delegates contains functionality to class book

public List<Book> search(String string) {
—2 List<Book> booksFound = pew ArrayList<Book>();
for (Book book : books) {
if (book.contains(string)) {
booksFound.add (book) ;

}
}
return booksFound;
}
» In class Book

public boolean contains (String string) {
return signature.contains (string) |
title.contains (string) ||
author.contains (string)

}

Advantages:
» Separation of concerns: LibraryApp is searching, Book is
providing matching criteria
» Matching criteria can be changed without affecting the
search logic

Hubert

Contents

Programming Tips and Tricks

Requirements
Recap
Use case refinement
User Stories
Requirements management: How do deal with changing requirements

Testing

Summary

Recap

» Domain model

LibraryMember

borrows» copy of» Book
0.1 [N 1 | title <.
| author ~
Associgtions icities publisher
| edition a-"7"
Class -~~~

Reading direction

» Business Process

Confirm
Detention
Decision

Inform
Social Care
Inform Next

of

Update

Register
«system»
MHC-PMS

Detention
Decision

«system»
Admissions
System

"°Is Attributes

Hubert

Use Case Recap

Use case diagram

User

TravelAgency

Search Avaialbe Flight;

Add Flight to Trip

Search Available Hotel

Add Hotel to Trip

Delete Hotel from Trip

Delete Flight from Trip

Detailed use case

name: Search Available Flights
description: ...
actor: User

main scenario:

1. The user provides information
about the city to travel to and
the arrival and departure dates

2. The system provides a list of
available flights with prices and
booking number

alternative scenario:

1a. The input data is not correct
(see below)

2. The system notifies the user
of that fact and terminates
and starts the use case from
the beginning

Hubert

Hubert

Hubert

Use case refinement

» System boundary is important
» Deriving requirements of subsystems
» Example: Mobile Multi-User Dungeon (MUD) Game

—

e
T

Player

Hubert

Use case refinement
» Decompose the system into subsystems

MUD

Phone Game Server
* 1

[N

» Determine use cases for the subsystems

@
) § e | E o uh

Snﬁ) o

meSev. /7 k% é.»v
?) i_O. R

Gaaingame)

Hubert

Hubert

User stories

» Basic requirements documentation for agile processes

» Introduced with Extreme Programming: Simplifies use
cases

» Contains a "story” that the user tells about the use of the
system
» Focus on features

» "As a customer, | want to book and plan a single flight from
Copenhagen to Paris”.

» Recommended, but not exclusive: As a <role>, | want
<goal/desire> so that <benefit>"

» Documented by user story cards, i.e. index cards

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Example of user stories

Each line is one user story:

o Students can purchase monthly parking
passes online.
o Parking passes can be paid via credit

cards. =) oW ugw
o Parking passes can be paid via PayPal. s e
o Professors can input student marks. Pm] fn'm;. 9
» Students can obtain their current seminar

schedule.

 Students can order official transcripts.

o Students can only enroll in seminars for
which they have prerequisites.

o Transcripts will be available online via a
standard browser.

Scott Ambler 2003-2014 http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm
Hubert

Example of user story cards

"Use the simplest tool possible”
— index cards, post-its, ...

» electronically: e.g. Trello (trello. com)
Same card using "As a <role>,

| want <goal/dG48@2.SD-ﬂDat
<benefit>" introduced by Mike
@,wﬁ« Ga=fordase et Jes Cohen and MoSCoW
T — prioritization
= I
E—— BN b ;16 wskibat ol s Porcbose.
' - I (o) '7,1---'5’/:7“S ,‘_“z.fy So et

7{, i o e e e Eelen)
}gﬁff,@, —

JE widy | M Shod
} l‘“*‘_ &j

trello.com
Hubert

Hubert

Use the simplest tool possible

Paul Downey 2009 https://www.flickr.com/photos/psd/3731275681/in/photostream/

https://www.flickr.com/photos/psd/3731275681/in/photostream/

MoSCoW method for prioritizing requirements

Must have: Minimal usable subset to achieve the Minimal
Vialble Product

Should have: Important requirments but not time critical,
i.e. not relevant for the current delivery time frame

Could have: Desireable features; e.g. can improve
usability

Won’t have/Would like: Features explicitly excluded for
the current delivery time frame

Wikipedia: https://en.wikipedia.org/wiki/MoSCoW_method

https://en.wikipedia.org/wiki/MoSCoW_method

Two different ways of building the system

CRea)—,
Build the system by @\

layer/framework (traditional il
approach)

[P
//%// }’resentation Layer | {4y

] |
Database / |nfrastn(cé§(y¢//z

\

Hubert

Hubert

Two different ways of building the system

Build the system by
layer/framework (traditional
approach)

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Build the system by
functionality (Agile approach)

User User User
Story Story Story

Rresentation Layer

Application Layer

Domain Layer

Dathbage / Infrastructure Layer

N .)
iy G Lse Hug ‘?“"”\“
— User story driven: After

every implemented user
story a functional system

Hubert

Comparision: User Stories / Use Cases

Use Story

» one concrete
scenario/feature

User Case » Alternative scenarios of a
» several abstract scenarios use case are their own
with one goal user story
» only functional » functional + non-functional
requirements requirement

e.g. "The search for a
flight from Copenhagen
to Paris shall take less
than 5 seconds”

Comparision: User Stories / Use Cases

Use Case
» Advantage
» QOverview over the
functionality of the
system
» Disadvantage
» Not so easy to do a use
case driven

development
» E.g. Login use case

Use Story
» Advantage
» Easy software
development process:
user story driven
» Disadvantage

» Overview over the
functionality is lost

Hubert

Hubert

Example: Login

Use case
name: Login

actor: User User stories

main scenario 71 User logs in with
1 User logs in with username and password

username and password 2 User logs in with NEMID

alternative scenario TN bave Ll AN
1’ User logs in with NEMID -)
S~ K love Raluv

Hubert

Combining Use Cases and User Stories

1. Use cases:
» Gives an overview over the possible interactions
— use case diagram
2. Derive user stories from use case scenarios (i.e. main-
and alternative)
3. Implement the system driven by user stories
» Note that different scenarios in use cases may have
different priorities
— Not necessary to implement all scenarios of a use case
immediately

User Story Maps/ Rucrwss Uge Gase gk

Organize Manage L m
Email Email Calendar Use Goniac
Ggen
[- [- [~ - s [
Sea{w:h Filer Cumpose Re.uq bele:‘re View Create Update View Create Update Delete
Email Emails Email Email Email Calendar Appt Appt Appt Contact Contact Contact
Searclil] Move C:Zmen?‘ Open s== Delete View lis " Create Update View = gﬁmh Upda—
by s Eus'se basic email of appts basic contents Appt ITC o comtact
ikewont fer Nl e ponelinl ou i (SRR [orbrlS [Mocoion (Gl (SRR [ntRil
wo
Create™™ Send Open View — Create Accept/ F___ \0 .
e e e Monthly RTF appt Reject/T Lger Siones
folders mail mail formats entative
Lrengiie A 0 AR e e Release 1
Limit Gend fo Empty Vi G Add Delete
pen iew reate Propose Update
Search HTMLe- HTMLe- DEfed poijy bl newtime gt |adaresl| (CCHioch
-qu ?:;e mail mail il Format appt oy Infa
tela — —_— — — — — — — — = — = — —
Limit Open
Set Mandato
?:?rcn email eA:;gchm ry,lf()pﬁo
Fields peioeiivg B oA Ha Release 2
Search Get View Get View Import
attachm address Weekl address Attachm Contacts
ents from B Y from ents
i ey contacts _or'mcrts contacts = oy B .
Search Send Add Export
sub Attachm ﬁ;ﬂ\ur Attachm Contacts
folders ents ents
A i ~ Release 3

Shrikant Vashishtha http: //www.agilebuddha.com/wp-content/uploads/2013/02/IMAGO144.png

http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png
Hubert

Problem: Changing Requirements

Requirements can change
» Feedback from designing the system, implementing it, and
finally using it
— clarification, changing, and new requirements
» The business case changes over time
Different type of software
» Standard Software: Similar systems done a 100 times
» Requirements are stable
» New type of software. Experimental software. etc.
» Requirements change a lot

Requirements management: Waterfall

Ferdbodz &r?k—-
e Uger

» Needs a defined requirement management process
» E.g. Agreement of all stakeholders

» Changed / new requirements change the design and
implementation
» Cost of change not predictable
— Avoid changing/new requirements if possible

Hubert

Hubert

Hubert

Hubert

Requirements management: Agile Methods

: Each iteration implement the highest- E:J? \'km\i
High A Joriy ok i oM
PinriW priority work items . . I.(’M
D S ;wflemn.ulcdk Y
Modeled in / Each new work item is
~4—_> prioritized and added to

greater detail the stack

Work items may be
reprioritized at any time

HORIRRII

Modeled in
lesser detail i
> Work m?ms may be removed
at any time
Low
Priorily ‘r Copyright 2002-2014
Work Items Py‘.;ﬁgnllw Ambler

Scott Ambler 2003—2014 http://www.agilemodeling.com/artifacts/userStory.htm

» Cost of change
» New / changed requirements not done yet: zero costs
» Changed requirements already done: the cost of a
requiment that can not be implemented

http://www.agilemodeling.com/artifacts/userStory.htm
Hubert

Hubert

Contents

Programming Tips and Tricks
Requirements

Testing
Software Testing
Acceptance tests
JUnit

Summary

Purpose of tests

» Goal: finding bugs

Edsger Dijkstra
"Tests can show the presence of bugs, but not their absence.”

» Types of bugs: requirement-, design-, implementation
errors
» Types of testing:
» validation testing
» Does the software conform to the requirements?
» Have we built the right system?
» defect testing
» Does the software has any unexpected behaviour (e.g.
crashes)?
» Have we built the system right?

Validation testing vs defect testing

Validation Test (Quality Assurance (QA))

» Start city is Copenhagen, destination city is Paris. The
date is 1.3.2017. Check that the list of availabe flight
contains SAS 1234 and AF 4245

Defect Test (QA and stress tests)
» Start city is Copenhagen, the name of the destination city
contains the Crtl-L character.

» Check that the software reacts reasonable and does not
crash

Types of tests

1. Developer tests (validation testing)
I a) Unit tests (single classes and methods)
b) Component tests (single components = cooperating
classes)
c) System tests / Integration tests (cooperating components)
2. Release tests (validation and defect testing, QA)

a) Scenario based testing
b) Performance testing

3. User tests (validation tests)
l a) Acceptance tests

Hubert

Hubert

Acceptance Tests

» Tests defined by / with the help of the user
» based on the requirements
» Traditionally

» manual tests

» by the customer

» after the software is delivered

» based on use cases / user stories

» Agile software development

» automatic tests: JUnit, Behaviour Driven Development
(BDD), Framework for Integrated Tests (Fit), ...
» created before the user story is implemented

Hubert

Hubert

Hubert

Hubert

Hubert

Example of acceptance tests

» Use case
name: Login Admin
actor: Admin
precondition: Admin is not logged in
main scenario
1. Admin enters password
2. System responds true
alternative scenarios:
1a. Admin enters wrong password
1b. The system reports that the password is wrong and the use
case starts from the beginning

postcondition: Admin is logged in

Hubert

Hubert

Hubert

Manual tests
Successful login

Prerequisit: the password for the administrator is “adminadmin”

‘ Input ‘ Step ‘ Expected Output ‘ Fail ‘ OK ‘
Startup system Q“O) Exit”
“1) Login as administrator” it
“17 Enter choice “password” v)
“adminadmin” | Enter string “logged in” v
Failed login & Ul
Prerequisit: the password for the administrator is “adminadmin” k “o‘
‘ Input ‘ Step Expected Output ‘ Fail ‘ OK ‘
Startup system | “0) Exit” V
“1) Login as administrator”
“17 Enter choice “password” Vv
“admin” | Enter string “Password incorrect”
“0) Exit” Vv
“1) Login as administrator”

» Automatic test for the main scenario

Hubert

Hubert

Manual vs. automated tests

» Manual tests should be avoided
» They are expensive (time and personal) to execute: Can'’t
be run often
» Automated tests

» Are cheap (time and personal) to execute: Can be run as
soon something is changed in the system

— immediate feedback if a code change introduced a bug
— Regression tests

» More difficult (but not impossible) when they include the Ul

— Solution: Test under the Ul

» Robert Martin (Uncle Bob) in
http://www.youtube.com/watch?v=hG4LH6P8Syk

» manual tests are immoral from 36:35
» how to test applications having a Ul from 40:00

http://www.youtube.com/watch?v=hG4LH6P8Syk
Hubert

Hubert

Testing under the Ul

A

User

l Thin Presentation Layer

Application Layer
e.g. LibraryApp

Domain Layer
e.g. User, Book, ...

Persistency Layer

Hubert

Automatic tests

Successful login

@Test

public void testLoginAdmin () {
LibraryApp libApp = new LibraryApp();
assertFalse (libApp.adminLoggedIn()) ;
boolean login = libApp.adminLogin ("adminadmin");
assertTrue (login);

assertTrue (libApp.adminLoggedIn()) ;
}

Failed login

@Test

public void testWrongPassword() {
LibraryApp libApp = new LibraryApp();
assertFalse (1libApp.adminLoggedIn()) ;

boolean login = libApp.adminLogin ("admin");

assertFalse (login);
assertFalse (libApp.adminLoggedIn()) ;

Hubert

Hubert

Hubert

Hubert

Hubert

JUnit

Framework for automated tests in Java

Developed by Kent Beck and Erich Gamma =
, ><LLU\

Unit-, component-, and acceptance tests

v

v

v

v

http://www. junit.org
xUnit

v

http://www.junit.org
Hubert

JUnit and Eclipse

» JUnit 4.x libraries

[JoX) Properties for library01
Java Build Path G
¥ Resource
Builders (% Source [Projects |WENEICILIM & Order and Export
f;":’:’:j; o JARSs and class folders on the build path:
» Java Code Stvle » B\ JRE System Library [JavaSE-1.6] dd Agies:
¥ Java Comoiler > m\ JUnit 4

¥ Java Editor
Javadoc Location
Proiect References

Add External JARS...

Run/Debua Settinas AddiVariable..
¥ Task Repositorv
Task Taas Add Library...
P Validation
» New source directory for tests
[O) Properties for library01
‘ Java Build Path fe=13
¥ Resource
Builders QLB (> Projects i\ Libraries &, Order and Export
Coverace .
e Source folders on build path:
¥ Java Code Stvle » (B library01/src Add Folder...
¥ Java Compiler » (% library01/studenttests (new) &&=
¥ Java Editor > (% library01 test Link Source..

Javadoc Location
Proiect References

Hubert

JUnit 4.x structure

import org.junit.Test;
import static org.junit.Assert.x;

public class UseCaseName {
@Test

public void scenarioNamel () {..}
@Test
public void scenarioName2 () throws Exception {..}

» Independent tests
» No try-catch blocks (exception: checking for exceptions)

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

JUnit 4.x structure (Before and After)

public class UseCaseName {
QAfter
public void tearDown () {...}
@Before
public void setUp() {...}
@Test
public void scenariol() {..}
@Test
public void scenario2() {..}

} cl}ufoi SCQMQMb“((); #mr()&uh(j} Si‘a/C)‘.-.

Hubert

Hubert

Hubert

Struture of test cases

» Test class = one use case

» Test method = one scenario
» Use inheritance to share sample data between use cases
public class SampleDataSetup {
@Before ()
public void setUp() { .. }
QAfter ()
public void tearDown { .. }

}
public class TestBorrowBook extends SampleDataSetup {..}

Hubert

Hubert

JUnit assertions

General assertion

import static org.junit.Assert.x;

assertTrue (bexp)
assertTrue (msg,bexp)

Specialised assertions for readability

1.
2.

3.
. assertNull (obj) = (Kskr'l"ﬁ"“-(a%’ == u»“B

. assertNotNull (obj)

assertFalse (bexp) ~— o‘gs"“rr;“c < £ be’\P)

fail() = acm’r’\h«z(,(?olsc} "Hy_f"{" chd <5
OS&Y'\-T\rua(exp. Q?Im.(! Coct))

-

assertEquals (exp, act) =

— asweetTake oS ==uul)

Hubert

Hubert

JUnit: testing for exceptions

» Test that method m() throws an exception MyException

@Test
public void testMThrowsException() {
try {
m();
fail(); // If we reach here, then the test fails because
// no exception was thrown
} catch (MyException e) {
// Do something to test that e has the correct values

}

}
» Alternative

@Test (expected=MyException.class)
public void testMThrowsException() {..}

Hubert

Hubert

Hubert

Hubert

Contents

Programming Tips and Tricks
Requirements
Testing

Summary

Summary

» Requirements
» New use cases through system decomposition
» User Stories vs Use Cases
» Use Cases: Better overview of functionality; lets one think
about alternative and error cases
» User Stories: Simple scenarios, better for driving the
software development
» Changing Requirements: Requirments management
» Tests

Test to find bugs

Manual vs automated tests
Acceptance tests

JUnit

v

v vy

Exercises

» Homework for this week: continue with

» http://www2.imm.dtu.dk/courses/02161/2017/
slides/exercise02.pdf

» Still ongoing: programming exercises

» http://www2.imm.dtu.dk/courses/02161/2017/
index2.html

http://www2.imm.dtu.dk/courses/02161/2017/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2017/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2017/index2.html
http://www2.imm.dtu.dk/courses/02161/2017/index2.html

	Programming Tips and Tricks
	Booleans
	Constants
	Delegation

	Requirements
	Recap
	Use case refinement
	User Stories
	Requirements management: How do deal with changing requirements

	Testing
	Software Testing
	Acceptance tests
	JUnit

	Summary

