
Software Engineering I (02161)
Week 3

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

Contents

Programming Tips and Tricks
Booleans
Constants
Delegation

Requirements

Testing

Summary

Booleans

if ("adminadmin".equals(password)) {
adminLoggedIn = true;

} else {
adminLoggedIn = false;

}

Don’t use conditionals to set a boolean variable
I Better

adminLoggedIn = "adminadmin".equals(password);

Hubert

Booleans

if ("adminadmin".equals(password)) {
adminLoggedIn = true;

} else {
adminLoggedIn = false;

}

Don’t use conditionals to set a boolean variable
I Better

adminLoggedIn = "adminadmin".equals(password);

Hubert

Booleans

if (adminLoggedIn == false) {
throw new OperationNotAllowedException();

} else {
if (adminLoggedIn == true) books.add(book);

}

Use boolean variables directly; don’t compare boolean
variables with true or false

I Better

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

} else {
books.add(book);

}

or

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

}
books.add(book);

Hubert

Booleans

if (adminLoggedIn == false) {
throw new OperationNotAllowedException();

} else {
if (adminLoggedIn == true) books.add(book);

}

Use boolean variables directly; don’t compare boolean
variables with true or false

I Better

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

} else {
books.add(book);

}

or

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

}
books.add(book);

Hubert

Use constants instead of literals

public boolean login(String password) {
adminLoggedIn = "adminadmin".equals(password);
...

}

static final String ADMIN_PASSWORD = "adminadmin";
...
public boolean login(String password) {

adminLoggedIn = ADMIN_PASSWORD.equals(password);
...

}

I Put the constant in the class where it belongs conceptually
I Gives the constant a meaning: ADMIN PASSWORD vs

”adminadmin”, MAX NUMBER OF LOANED BOOKS vs 5
I Don’t repeat yourself (DRY): avoids several occurences of

the same constant, e.g. 5
I Naming convention: All uppercase with underscore

separating words (inherited from C)

Hubert

Use constants instead of literals

public boolean login(String password) {
adminLoggedIn = "adminadmin".equals(password);
...

}

static final String ADMIN_PASSWORD = "adminadmin";
...
public boolean login(String password) {

adminLoggedIn = ADMIN_PASSWORD.equals(password);
...

}

I Put the constant in the class where it belongs conceptually
I Gives the constant a meaning: ADMIN PASSWORD vs

”adminadmin”, MAX NUMBER OF LOANED BOOKS vs 5
I Don’t repeat yourself (DRY): avoids several occurences of

the same constant, e.g. 5
I Naming convention: All uppercase with underscore

separating words (inherited from C)

Hubert

Hubert

Hubert

Delegate Responsibility

I Original
public List<Book> search(String string) {

List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.getSignature().contains(string) ||
book.getTitle().contains(string) ||
book.getAuthor().contains(string)) {
booksFound.add(book);

}
}
return booksFound;

}

Hubert

Delegate Responsibility
I LibraryApp delegates contains functionality to class book

public List<Book> search(String string) {
List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.contains(string)) {
booksFound.add(book);

}
}
return booksFound;

}
I In class Book

public boolean contains(String string) {
return signature.contains(string) ||

title.contains(string) ||
author.contains(string)

}

Advantages:
I Separation of concerns: LibraryApp is searching, Book is

providing matching criteria
I Matching criteria can be changed without affecting the

search logic

Hubert

Contents

Programming Tips and Tricks

Requirements
Recap
Use case refinement
User Stories
Requirements management: How do deal with changing requirements

Testing

Summary

Recap
I Domain model

Associations Name of the association Multiplicities

Class

Attributes

Reading direction

Generalization

I Business Process

Hubert

Use Case Recap

Use case diagram

Delete Flight from Trip

Delete Hotel from Trip

List Trip

Add Flight to Trip

Add Hotel to Trip

TravelAgency

User

Search Available Hotels

Search Avaialbe Flights

Detailed use case
name: Search Available Flights
description: . . .
actor: User

main scenario:
1. The user provides information

about the city to travel to and
the arrival and departure dates

2. The system provides a list of
available flights with prices and
booking number

alternative scenario:
1a. The input data is not correct

(see below)
2. The system notifies the user

of that fact and terminates
and starts the use case from
the beginning

. . .

Hubert

Hubert

Hubert

Use case refinement

I System boundary is important
I Deriving requirements of subsystems
I Example: Mobile Multi-User Dungeon (MUD) Game

Hubert

Use case refinement
I Decompose the system into subsystems

Game ServerPhone

MUD

1

*

I Determine use cases for the subsystems

GameSever

Join Game

Phone

Hubert

Hubert

User stories

I Basic requirements documentation for agile processes
I Introduced with Extreme Programming: Simplifies use

cases
I Contains a ”story” that the user tells about the use of the

system
I Focus on features

I ”As a customer, I want to book and plan a single flight from
Copenhagen to Paris”.

I Recommended, but not exclusive: ”As a <role>, I want
<goal/desire> so that <benefit>”

I Documented by user story cards, i.e. index cards

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Example of user stories

Each line is one user story:

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm
Hubert

Example of user story cards

”Use the simplest tool possible”
→ index cards, post-its, . . .
I electronically: e.g. Trello (trello.com)

Same card using ”As a <role>,
I want <goal/desire> so that
<benefit>” introduced by Mike
Cohen and MoSCoW
prioritization

trello.com
Hubert

Hubert

Use the simplest tool possible

Paul Downey 2009 https://www.flickr.com/photos/psd/3731275681/in/photostream/

https://www.flickr.com/photos/psd/3731275681/in/photostream/

MoSCoW method for prioritizing requirements

Must have: Minimal usable subset to achieve the Minimal
Vialble Product
Should have: Important requirments but not time critical,
i.e. not relevant for the current delivery time frame
Could have: Desireable features; e.g. can improve
usability
Won’t have/Would like: Features explicitly excluded for
the current delivery time frame

Wikipedia: https://en.wikipedia.org/wiki/MoSCoW_method

https://en.wikipedia.org/wiki/MoSCoW_method

Two different ways of building the system

Build the system by
layer/framework (traditional
approach)

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Build the system by
functionality (Agile approach)

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

→ User story driven: After
every implemented user
story a functional system

Hubert

Hubert

Two different ways of building the system

Build the system by
layer/framework (traditional
approach)

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Build the system by
functionality (Agile approach)

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

→ User story driven: After
every implemented user
story a functional system

Hubert

Comparision: User Stories / Use Cases

User Case
I several abstract scenarios

with one goal
I only functional

requirements

Use Story
I one concrete

scenario/feature
I Alternative scenarios of a

use case are their own
user story

I functional + non-functional
requirement

e.g. ”The search for a
flight from Copenhagen
to Paris shall take less
than 5 seconds”

Comparision: User Stories / Use Cases

Use Case
I Advantage

I Overview over the
functionality of the
system

I Disadvantage
I Not so easy to do a use

case driven
development

I E.g. Login use case

Use Story
I Advantage

I Easy software
development process:
user story driven

I Disadvantage
I Overview over the

functionality is lost

Hubert

Hubert

Example: Login

Use case
name: Login
actor: User
main scenario

1 User logs in with
username and password

alternative scenario
1’ User logs in with NEMID

User stories
1 User logs in with

username and password
2 User logs in with NEMID

Hubert

Combining Use Cases and User Stories

1. Use cases:
I Gives an overview over the possible interactions
→ use case diagram

2. Derive user stories from use case scenarios (i.e. main-
and alternative)

3. Implement the system driven by user stories
I Note that different scenarios in use cases may have

different priorities
→ Not necessary to implement all scenarios of a use case

immediately

User Story Maps

Shrikant Vashishtha http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png

http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png
Hubert

Problem: Changing Requirements

Requirements can change
I Feedback from designing the system, implementing it, and

finally using it
→ clarification, changing, and new requirements
I The business case changes over time

Different type of software
I Standard Software: Similar systems done a 100 times

I Requirements are stable
I New type of software. Experimental software. etc.

I Requirements change a lot

Requirements management: Waterfall

I Needs a defined requirement management process
I E.g. Agreement of all stakeholders

I Changed / new requirements change the design and
implementation

I Cost of change not predictable
→ Avoid changing/new requirements if possible

Hubert

Hubert

Hubert

Hubert

Requirements management: Agile Methods

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

I Cost of change
I New / changed requirements not done yet: zero costs
I Changed requirements already done: the cost of a

requiment that can not be implemented

http://www.agilemodeling.com/artifacts/userStory.htm
Hubert

Hubert

Contents

Programming Tips and Tricks

Requirements

Testing
Software Testing
Acceptance tests
JUnit

Summary

Purpose of tests

I Goal: finding bugs

Edsger Dijkstra
”Tests can show the presence of bugs, but not their absence.”

I Types of bugs: requirement-, design-, implementation
errors

I Types of testing:
I validation testing

I Does the software conform to the requirements?
I Have we built the right system?

I defect testing
I Does the software has any unexpected behaviour (e.g.

crashes)?
I Have we built the system right?

Validation testing vs defect testing

Validation Test (Quality Assurance (QA))
I Start city is Copenhagen, destination city is Paris. The

date is 1.3.2017. Check that the list of availabe flight
contains SAS 1234 and AF 4245

Defect Test (QA and stress tests)
I Start city is Copenhagen, the name of the destination city

contains the Crtl-L character.
I Check that the software reacts reasonable and does not

crash

Types of tests

1. Developer tests (validation testing)
a) Unit tests (single classes and methods)
b) Component tests (single components = cooperating

classes)
c) System tests / Integration tests (cooperating components)

2. Release tests (validation and defect testing, QA)
a) Scenario based testing
b) Performance testing

3. User tests (validation tests)
a) Acceptance tests

Hubert

Hubert

Acceptance Tests

I Tests defined by / with the help of the user
I based on the requirements

I Traditionally
I manual tests
I by the customer
I after the software is delivered
I based on use cases / user stories

I Agile software development
I automatic tests: JUnit, Behaviour Driven Development

(BDD), Framework for Integrated Tests (Fit), . . .
I created before the user story is implemented

Hubert

Hubert

Hubert

Hubert

Hubert

Example of acceptance tests

I Use case
name: Login Admin
actor: Admin
precondition: Admin is not logged in
main scenario

1. Admin enters password
2. System responds true

alternative scenarios:
1a. Admin enters wrong password
1b. The system reports that the password is wrong and the use

case starts from the beginning

postcondition: Admin is logged in

Hubert

Hubert

Hubert

Manual tests
Successful login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

Failed login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

I Automatic test for the main scenario

Hubert

Hubert

Manual vs. automated tests

I Manual tests should be avoided
I They are expensive (time and personal) to execute: Can’t

be run often
I Automated tests

I Are cheap (time and personal) to execute: Can be run as
soon something is changed in the system
→ immediate feedback if a code change introduced a bug
→ Regression tests

I More difficult (but not impossible) when they include the UI
→ Solution: Test under the UI

I Robert Martin (Uncle Bob) in
http://www.youtube.com/watch?v=hG4LH6P8Syk

I manual tests are immoral from 36:35
I how to test applications having a UI from 40:00

http://www.youtube.com/watch?v=hG4LH6P8Syk
Hubert

Hubert

Testing under the UI

Domain Layer
e.g. User, Book, ...

Persistency Layer

User

Application Layer
e.g. LibraryApp

Thin Presentation Layer

Hubert

Automatic tests
Successful login

@Test
public void testLoginAdmin() {

LibraryApp libApp = new LibraryApp();

assertFalse(libApp.adminLoggedIn());

boolean login = libApp.adminLogin("adminadmin");

assertTrue(login);
assertTrue(libApp.adminLoggedIn());

}

Failed login

@Test
public void testWrongPassword() {

LibraryApp libApp = new LibraryApp();

assertFalse(libApp.adminLoggedIn());

boolean login = libApp.adminLogin("admin");

assertFalse(login);
assertFalse(libApp.adminLoggedIn());

}

Hubert

Hubert

Hubert

Hubert

Hubert

JUnit

I Framework for automated tests in Java
I Developed by Kent Beck and Erich Gamma
I Unit-, component-, and acceptance tests
I http://www.junit.org

I xUnit

http://www.junit.org
Hubert

JUnit and Eclipse

I JUnit 4.x libraries

I New source directory for tests

Hubert

JUnit 4.x structure

import org.junit.Test;
import static org.junit.Assert.*;

public class UseCaseName {
@Test
public void scenarioName1() {..}
@Test
public void scenarioName2() throws Exception {..}
...

}

I Independent tests
I No try-catch blocks (exception: checking for exceptions)

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

JUnit 4.x structure (Before and After)

...
public class UseCaseName {

@After
public void tearDown() {...}
@Before
public void setUp() {...}
@Test
public void scenario1() {..}
@Test
public void scenario2() {..}
...

}

Hubert

Hubert

Hubert

Struture of test cases

I Test class = one use case
I Test method = one scenario
I Use inheritance to share sample data between use cases

public class SampleDataSetup {
@Before()
public void setUp() { .. }
@After()
public void tearDown { .. }
... }

public class TestBorrowBook extends SampleDataSetup {..}

Hubert

Hubert

JUnit assertions

General assertion

import static org.junit.Assert.*;

assertTrue(bexp)
assertTrue(msg,bexp)

Specialised assertions for readability

1. assertFalse(bexp)

2. fail()

3. assertEquals(exp,act)

4. assertNull(obj)

5. assertNotNull(obj)
...

Hubert

Hubert

JUnit: testing for exceptions

I Test that method m() throws an exception MyException
@Test
public void testMThrowsException() {

...
try {

m();
fail(); // If we reach here, then the test fails because

// no exception was thrown
} catch(MyException e) {

// Do something to test that e has the correct values
}

}

I Alternative
@Test(expected=MyException.class)
public void testMThrowsException() {..}

Hubert

Hubert

Hubert

Hubert

Contents

Programming Tips and Tricks

Requirements

Testing

Summary

Summary

I Requirements
I New use cases through system decomposition
I User Stories vs Use Cases

I Use Cases: Better overview of functionality; lets one think
about alternative and error cases

I User Stories: Simple scenarios, better for driving the
software development

I Changing Requirements: Requirments management
I Tests

I Test to find bugs
I Manual vs automated tests
I Acceptance tests
I JUnit

Exercises

I Homework for this week: continue with
I http://www2.imm.dtu.dk/courses/02161/2017/
slides/exercise02.pdf

I Still ongoing: programming exercises
I http://www2.imm.dtu.dk/courses/02161/2017/
index2.html

http://www2.imm.dtu.dk/courses/02161/2017/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2017/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2017/index2.html
http://www2.imm.dtu.dk/courses/02161/2017/index2.html

	Programming Tips and Tricks
	Booleans
	Constants
	Delegation

	Requirements
	Recap
	Use case refinement
	User Stories
	Requirements management: How do deal with changing requirements

	Testing
	Software Testing
	Acceptance tests
	JUnit

	Summary

