
Software Engineering I (02161)
Week 2

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2017

Contents

What are software requirements?

Requirements Engineering Process

Domain model

Activity Diagrams

Use Cases

Summary

Basic Activities in Software Development

I Understand and document what kind of the software the
customer wants
→ Requirements Analysis / Engineering

I Determine how the software is to be built
→ Design

I Build the software
→ Implementation

I Validate that the software solves the customers problem
→ Testing

Hubert

Requirements Analysis

Requirements Analysis
Understand and document the kind of software the customer
wants

I Describe mainly the external behaviour of the system and
not how it is realised
→ what not how

I Techniques for discovering, understanding, and
documentation

I Glossary and Business Processes: Understand the
problem domain

I Use Cases: Understand and discover the functionality of
the system

I User Stories: Understand and discover the functionality of
the system

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Types of Requirements

I Functional Requirements
I E.g. the user should be able to plan and book a trip

I Non-functional Requirements
I All requirements that are not functional
I E.g.

I Where should the software run?
I What kind of UI the user prefers?
I What is the response time?
I . . .

Hubert

Who writes requirements?

I The customer:
I User requirements

I The contractor together with the customer
I System requirements

I The requirements for the software development team how to
build the system

→ more detailed than user requirements
→ basis for a contract between customer and contractor

Hubert

Travel Agency Example: User Requirements

The travel agency TravelGood comes to you as software
developers with the following proposal for a software project:

I Problem description / user requirements
”TravelGood wants to offer a trip-planning and booking
application to its customers. The application should allow
the customer to plan trips consisting of flights and hotels.
First the customer should be able to assemble the trip,
before he then books all the flights and hotels in on step.
The user should be able to plan several trips. Furthermore
it should be possible to cancel already booked trips.”

→ Not enough: Text needs to be analysed and system
requirements extracted

Travel Agency

I Functional Requirements
I ”plan a trip, book a trip, save a planned trip for later

booking, . . . ”
I Non-functional requirements

I ”System should be a Web application accessible from all
operating systems and most of the Web browsers”

I ”It must be possible to deploy the Web application in a
standard Java application servers like GlassFish or Tomcat”

I ”The system should be easy to handle (it has to a pass a
usability test)”

Hubert

Hubert

Hubert

Non exclusive checklist of non-functional requirements

Ian Sommerville, Software Engineering - 9

Hubert

Hubert

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Possible measures

Ian Sommerville, Software Engineering - 9

Contents

What are software requirements?

Requirements Engineering Process

Domain model

Activity Diagrams

Use Cases

Summary

Requirements engineering process

A spiral view of the requirements engineering process

Ian Sommerville, Software Engineering - 9

Hubert

Requirements Engineering Process: Techniques

I Elicitation / Discovery
I Problem description
I Interviews
I Domain Model plus Business Processes
I Use Cases

I Specification / Documentation
I Use Cases / User Stories

I Validation
I Inspection

I Validity, Consistent, Complete, Realistic, . . .
I Creation of tests

Hubert

Hubert

Contents

What are software requirements?

Requirements Engineering Process

Domain model

Activity Diagrams

Use Cases

Summary

Hubert

Domain model

I Purpose: capture the customer’s knowledge of the
domain so that the system builders have the same
knowledge

I Helps customer and system builders to speak the same
language

→ Necessary to define the terminology used
→ Glossary

→ Relationships between terms are shown in a class
diagram
→ Related to the concept of an ontology

→ If necessary, make business processes visible
→ Represented by UML Activity Diagrams

Glossary

glossary (plural glossaries)
”1. (lexicography) A list of terms in a particular domain of
knowledge with the definitions for those terms.” (Wikitionary)

I List of terms with explanations
I Terms can be nouns (e.g. those mentioned in a problem

description) but also verbs or adjectives e.t.c.
I List of terms with explanations
I Terms can be nouns (e.g. those mentioned in a problem

description) but also verbs or adjectives e.t.c.
I Warning

I Capture only knowledge relevant for the application
I Don’t try to capture all possible knowledge

Hubert

Example

Part of a glossary for a library application
Book

I A book is a is a conceptual entity in a library. A book is
defined by its title, the name of his authors, the publisher
and the edition. A library can have several copies of the
same book.

Copy
I A copy is a physical copy of a particular book. For

example, the library has three copies of the book ”Using
UML” by Perdiate Stevens. . . .

. . .

Hubert

Hubert

Hubert

Hubert

Terms and their relations

I Class diagrams
I Usually

I Classes (for nouns)
I Associations: for static relationships
I Generalizations
I Use of attributes possible
I Often without operations
I verbs → operations

I Warning
I Shows customer knowledge
I Should not be biased by implementation

Hubert

Hubert

Hubert

Domain model (terms and their relations)

Associations Name of the association Multiplicities

Class

Attributes

Reading direction

Generalization

Hubert

Contents

What are software requirements?

Requirements Engineering Process

Domain model

Activity Diagrams

Use Cases

Summary

Activity Diagram: Business Processes

I Describe the context of the system
I Helps finding the requirements of a system

I modelling business processes leads to suggestions for
possible systems and ways how to interact with them

I Software systems need to fit in into existing business
processes

Ian Sommerville, Software Engineering – 9, 2010

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Activity Diagram Example Workflow

Hubert

Activity Diagram Example Operation

Hubert

UML Activity Diagrams

I Focus is on control flow and data flow
I Good for showing parallel/concurrent control flow
I Purpose

I Model business processes
I Model workflows
I Model single operations

I Literature: UML Distilled by Martin Fowler

Hubert

Activity Diagram Concepts

I Actions
I Are atomic
I E.g Sending a message, doing some computation, raising

an exception, . . .
I UML has approx. 45 Action types

I Concurrency

I Fork: Creates concurrent flows
I Can be true concurrency
I Can be interleaving

I Join: Synchronisation of concurrent activities
I Wait for all concurrent activities to finish (based on token

semantics)

I Decisions
I Notation: Diamond with conditions on outgoing transitions
I else denotes the transition to take if no other condition is

satisfied

Hubert

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Swimlanes / Partitions

I Swimlanes show who is performing an activity

Hubert

Hubert

Objectflow example

Hubert

Data flow and Control flow

I Data flow and control flow are shown:

Order Make
Payment

Receive
Invoice

I Control flow can be omitted if implied by the data flow:

Order Make
Payment

Receive
Invoice

Hubert

Use of Activity Diagrams

I Focus on concurrent/parallel execution
I Requirements phase

I To model business processes / workflows to be automated
I Design phase

I Show the semantics of one operation
I Close to a graphic programming language

Contents

What are software requirements?

Requirements Engineering Process

Domain model

Activity Diagrams

Use Cases
Diagrams
Detailed Use Cases

Summary

Use Case

Use cases discover and document functional requirements
→ Naming convention: ”Do something” (= functionality): ”verb

+ noun”

Use Case
A Use Case is a set of interaction scenarios of one or several
actors with the system serving a common goal.

Use Case Diagram
A use case diagram provides and overview over the use cases
of a system and who is using the functionality.

Detailed Use Case description
A detailed use case description describes the interaction
between the user and the system as a set of scenarios

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Use Case Diagram

TravelAgency

Manage Hotels

Manage Flights

Manage TripUser

Cancel Trip

Book Trip

Plan Trip

Administrator

Hubert

Types of use case diagrams

a) Business use cases (kite level use cases (from Alistair
Cockburn))

b) System use cases / sea level use cases (fish level use
cases (from Alistair Cockburn)

UML Destilled, Martin Fowler

Hubert

Hubert

Hubert

Example Business Use Cases

TravelAgency

Manage Hotels

Manage Flights

Manage TripUser

Cancel Trip

Book Trip

Plan Trip

Administrator

Hubert

Example System Use Cases

Plan trip use cases

Delete Flight from Trip

Delete Hotel from Trip

List Trip

Add Flight to Trip

Add Hotel to Trip

TravelAgency

User

Search Available Hotels

Search Avaialbe Flights

Manage trip use cases

Save Trip

Book Trip

User
Cancel Trip

Delete Trip

Edit Trip

TravelAgency

Hubert

Business Use Cases vs. System Use Cases

I Choose the appropriate detail level and stick with it
I Start with business use cases

I Overview over system functionality is more important than
detail

I Add system level use cases as needed
I If needed use several diagrams

Hubert

Hubert

Hubert

Relations between use cases
extends: used to extract
variant behaviour

includes: used to factor
common behaviour of use
cases

UML User Guide, Grady Booch et al

Use extend and include sparingly

Hubert

Hubert

Don’ts of Use case diagrams
I Use case diagrams don’t explain how a use case works,

this is part of the detailed use case description

Select Trip

Delete Trip

Login
Travel Agency

User

Delete Trip

Travel Agency

User

Delete Selected TripSelect Trip

Travel Agency

Login

User

«include»

«include»

Hubert

Hubert

Hubert

Detailed use cases: Template

Template to be used in this course for detailed use case
descriptions

name: The name of the use case
description: A short description of the use case
actor: One or more actors who interact with the system
precondition: Possible assumptions on the system state to enable the
use case (optional)

main scenario: A description of the main interaction between user and
system

→ Note: should only explain what the system does from the
user’s perspective

alternative scenarios:
note: Used for everything that does not fit in the above categories

→ To be used in the examination report

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Use case scenarios

System

Actor

Use case

I Use case scenarios = interaction between an actor and the
system

I Anything the actor does with the system
I System responses
I Effects visible/important to the customer

I Not part of the interaction: What the system internally does

Hubert

Hubert

Hubert

Hubert

Hubert

Hubert

Detailed use case search available flights

name: search available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and

the arrival and departure dates
2. The system provides a list of available flights with prices

and booking number
alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Hubert

Hubert

Hubert

Detailed use case cancel trip

name: cancel trip
description: cancels a trip that was booked
actor: user
precondition:

I the trip must have been booked
I the first date for a hotel or flight booking must be one day in

the future
main scenario:

1. user selects trip for cancellation
2. the system shows how much it will cost to cancel the trip
3. selected trip will be cancelled after a confirmation

Hubert

Hubert

Pre-condition

name: Delete trip
actor: User
scenario

1. login user
2. select trip
3. delete selected trip

I Issue: The user has to
login each time

name: Delete trip
actor: User
precondition: user is

logged in
scenario

1. login user
2. select trip
3. delete selected trip

I Now has be logged in, but
does not have to login
each time

Pre-condition

name: Delete trip
actor: User
scenario

1. login user
2. select trip
3. delete selected trip

I Issue: The user has to
login each time

name: Delete trip
actor: User
precondition: user is

logged in
scenario

1. login user
2. select trip
3. delete selected trip

I Now has be logged in, but
does not have to login
each time

Pre-condition

name: Delete trip
actor: User
scenario

1. login user
2. select trip
3. delete selected trip

I Issue: The user has to
login each time

name: Delete trip
actor: User
precondition: user is

logged in
scenario

1. login user
2. select trip
3. delete selected trip

I Now has be logged in, but
does not have to login
each time

Hubert

Contents

What are software requirements?

Requirements Engineering Process

Domain model

Activity Diagrams

Use Cases

Summary

Summary

I Requirements:
I functional vs non-functional; user– vs system requirements

I Requirements process:
I discover, document, validate

I Discovering requirements
I Create a domain model: Glossary + Business Process

I Discovering and documenting requirements
I Use cases: Use case diagram + detailed use cases

I Next week
I User stories
I Changing requirements

	What are software requirements?
	Requirements Engineering Process
	Domain model
	Activity Diagrams
	Use Cases
	Diagrams
	Detailed Use Cases

	Summary

