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Recap

I Good Design principles
I Low coupling / high cohesion→ Law of Demeter
I DRY (Don’t repeat yourself)
I KISS (Keep it simple)

I Design Patterns
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What does this function do?

public List<Integer> f(List<Integer> list) {
if (list.size() <= 1) return list;

int p = list.elementAt(0);

List<Integer> l1 = new ArrayList<Integer>();
List<Integer> l2 = new ArrayList<Integer>();
List<Integer> l3 = new ArrayList<Integer>();

g(p,list,l1,l2,l3);

List<Integer> r = f(l1);

r.addAll(l2);
r.addAll(f(l3));

return r;
}

public void g(int p, List<Integer> list,
List<Integer> l1, List<Integer> l2, List<Integer> l3) {

for (int i : list) {
if (i < p) l1.add(i);
if (i == p) l3.add(i);
if (i > p) l2.add(i);

}
}



What does this function do?

public void testEmpy() {
int[] a = {};
List<Integer> r = f(Array.asList(a));
assertTrue(r.isEmpty());

}

public void testOneElement() {
int[] a = { 3 };
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(3),r);

}

public void testTwoElements() {
int[] a = {2, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2),r);

}

public void testThreeElements() {
int[] a = {2, 3, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2,3),r);

}
...



What does this function do?

List<Integer> f(List<Integer> a)

Precondition: a is not null
Postcondition: For all result ,a ∈ List<Integer>:
result == f (a)
if and only if

isSorted(result) and sameElements(a,result)
where

isSorted(a) if and only if
for all 0 ≤ i , j < a.size():

i ≤ j implies a.get(i) ≤ a.get(j)

and
sameElements(a,b) if and only if

for all i ∈ Integer : count(a, i) = count(b, i)



Design by contract

Contract between Caller and the Method
I Caller ensures precondition
I Method ensures postcondition

I Contracts specify what instead of how



Example Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv:  i >= 0}

{context Counter :: inc ( ) 
post: i = i@pre + 1}

{context Counter :: dec ( ) 
pre: i > 0 
post: i = i@pre - 1  }

public T n(T1 a1, .., Tn an, Counter c)
...
// Here the precondition of c has to hold
// to fulfil the contract
c.dec();
// Before returning from dec, c has to ensure the
// postcondition of dec
...



Bank example with constraints

Bank

Account

update(n : int) : void

bal : int

History

History() : void

bal : int

0..1

prev

1

1

0..1

1

owner

0..*
accounts

{context Bank
inv: accounts->forAll(a | a.owner = self)

{inv: bal >= 0}

{pre: bal + n >= 0
post: bal = bal@pre + n       and
         history.oclIsNew()        and
         history.bal = bal@pre  and
        history.prev = history@pre}



Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev
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Example

LibraryApp::addMedium(Medium m)
pre: adminLoggedIn
post: medium = medium@pre->including(m) and

medium.library = this

LibraryApp::search(String string) : List<Medium>
post: result = medium->select(m |

m.title.contains(string) or
m.autor.contains(string) or
m.signature.contains(string))

medium = medium@pre

User::borrowMedium(Medium m)
pre: borrowedMedium->size < 10

and m != null
and not(borrowedMedium->exists(m’ | m’.isOverdue))

post: m.borrowDate = libApp.getDate() and
borrowedMedium = borrowedMedium@pre->including(m)



Postcondition

Assume that result denotes the result of the function
f (x : double).

1) post: result2 = x
2) post: result = x2

3) post: x2 = result

4) post: x = result2

Which statements are correct: (multiple answers are possible)
a) 2 is the postcondition for the function computing the square

of a number
a) 4 is the postcondition for the function computing the square

of a number
e) 3 is the postcondition of the square root function
e) 1 is the postcondition of the square root function



Precondition

I Given the contract for a method minmax(int []array) in a
class which has instance variables min and max of type
int:

pre: array 6= null and array .length > 0
post: ∀i ∈ array : min ≤ i ≤ max

I Which of the following statements is true: if the client calls
minmax such the precondition is not satisfied

a) A NullPointerException is thrown
b) An IndexOutOfBoundsException is thrown
c) Nothing happens
d) What happens depends on the implementation of minmax



Implementing DbC with assertions

I Many languages have an assert construct:
assert bexp; or assert bexp:string;

I Contract for Counter::dec(i:int)
Pre: i > 0
Post: i = i@pre − 1

void dec() {
assert i > 0 : "Precondition violated"; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == prei-1 : "Postcondtion violated"; // Postcondition

}

I assert 6= assertTrue
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Important
I Assertion checking is switched off by default in Java

1) java -ea Main
2) In Eclipse



Implementing DbC in Java
Pre: args 6= null and args.length > 0
Post: ∀n ∈ args : min ≤ n ≤ max

public class MinMax {
int min, max;

public void minmax(int[] args) throws Error {
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; i < args.length; i++) {
int obs = args[i];
if (obs > max)
max = obs;

else if (min < obs)
min = obs;

}
assert isBetweenMinMax(args);

}

private boolean isBetweenMinMax(int[] array) {
boolean result = true;
for (int n : array) {
result = result && (min <= n && n <= max);

}
return result;

}



Assertions

I Advantage
I Postcondition is checked for each computation
I Precondition is checked for each computation

I Disadvantage
I Checking that a postcondition is satisfied can take as much

time as computing the result
→ Performace problems
I Solution:

I Assertion checking is switched on during developing,
debugging and testing and switched off in production
systems

I Only make assertions for precondition
→ Preconditions are usually faster to check
→ Contract violations by the client are more difficult to find than

postcondition violations (c.f. assertions vs tests)



Assertion vs. Tests

I Assertion
I Checks all computations (as long as assertion checking is

switched on)
I Checks also for contract violations from the client (i.e.

precondition violations)
I Tests

I Only checks test cases (concrete values)
I Cannot check what happens if the contract is violated by

the client



Invariants: Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv:  i >= 0}

{context Counter :: inc ( ) 
post: i = i@pre + 1}

{context Counter :: dec ( ) 
pre: i > 0 
post: i = i@pre - 1  }

I Methods
I assume that invariant holds
I ensure invariants

I When does an invariant hold?
I After construction
I After each public method



Invariants

I Contstructor has to ensure invariant
public Counter() {

i = 0;
assert i >= 0; // Invariant

}

I Operations ensure and assume invariant
void dec() {

assert i >= 0; // Invariant
assert i > 0; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == prei-1; // Postcondition
assert i >= 0; // Invariant

}



Contracts and inheritance

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}



Contracts and Inheritance

Liskov / Wing Substitution principle:
At every place, where one can use objects of the superclass C,
one can use objects of the subclass D

public T n(C c)
...
// has to ensure PreˆC_m
c.m();
// n can rely PostˆC_m
...

I Compare t .n(new C()) with
t .n(new D()).

→ PreC
m =⇒ PreD

m weaken precondition
→ PostD

m =⇒ PostC
m strengthen

postcondition (traditional)
→ PostD

m =⇒ (PreC
m =⇒ PostC

m) more
precise

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}



Counter vs. Counter1

Counter and Counter1 are identical with the exception of
operation dec:

I Counter::dec
pre: i > 0
post: i = i@pre − 1

I Counter1::dec
pre: true
post: (i@pre > 0) =⇒ i = i@pre − 1 and

(i@pre ≤ 0) =⇒ i = 0

Which statement is true?
a) Counter is a subclass of Counter1
b) Counter1 is a subclass of Counter
c) There is no subclass relationship between Counter and

Counter1



Defensive Programming
I Can one trust the client to ensure the precondition?
void dec() { i--; }

I No. If the client calls dec() when the counter is set to 0, the
invariant is viloated as the counter gets negative

I Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i--; } }

I New Contract: No requirement for the client
I Method has to ensure it works with any argument

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1)

I under specification: we don’t say what happens when i ≤ 0
I More precise

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1) and

(i@pre ≤ 0) =⇒ (i = 0)
I Does the implementation satisfy this contract?
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Defensive Programming

PublicClass

+ n

PackagePrivateClass

m
Client

Framework



Defensive Programming

ApplicationClass

+ n

GUIClass

ApplicationLayer

PresentationLayer1 PresentationLayer2

GUIClass



Defensive Programming

Given method contracts 1)

LibraryApp::addMedium(Medium m)
pre: adminLoggedIn
post: medium = medium@pre->including(m) and

medium.library = this)

and 2)

LibraryApp::addMedium(Medium m)
post: adminLoggedIn implies

medium = medium@pre->including(m) and
medium.library = this)

Which statement is correct?
a) 1) uses defensive programming
b) 2) uses defensive programming
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Activity Diagram: Business Processes

I Describe the context of the system
I Helps finding the requirements of a system

I modelling business processes leads to suggestions for
possible systems and ways how to interact with them

I Software systems need to fit in into existing business
processes

Ian Sommerville, Software Engineering – 9, 2010



Activity Diagram Example Workflow



Activity Diagram Example Operation



UML Activity Diagrams

I Focus is on control flow and data flow
I Good for showing parallel/concurrent control flow
I Purpose

I Model business processes
I Model workflows
I Model single operations

I Literature: UML Distilled by Martin Fowler



Activity Diagram Concepts

I Actions
I Are atomic
I E.g Sending a message, doing some computation, raising

an exception, . . .
I UML has approx. 45 Action types

I Concurrency

I Fork: Creates concurrent flows
I Can be true concurrency
I Can be interleaving

I Join: Synchronisation of concurrent activities
I Wait for all concurrent activities to finish (based on token

semantics)

I Decisions
I Notation: Diamond with conditions on outgoing transitions
I else denotes the transition to take if no other condition is

satisfied



Activity Diagrams Execution
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Activity Diagrams Execution



Swimlanes / Partitions

I Swimlanes show who is performing an activity



Objectflow example



Data flow and Control flow

I Data flow and control flow are shown:

Order Make
Payment

Receive
Invoice

I Control flow can be omitted if implied by the data flow:

Order Make
Payment

Receive
Invoice



Use of Activity Diagrams

I Focus on concurrent/parallel execution
I Requirements phase

I To model business processes / workflows to be automated
I Design phase

I Show the semantics of one operation
I Close to a graphic programming language



Activity Diagram vs State Machines



Contents

Design by Contract (DbC)

Activity Diagrams

Summary of the course



What did you learn?

I Requirements: Use Cases, User Stories, Use Case
Diagrams

I Testing: Systematic Tests, Test-Driven Development
I System Modelling: Class Diagram, Sequence Diagrams,

State Machines, Activity Diagrams
I Design: CRC cards, Refactoring, Layered Architecture,

Design Principles, Design Patterns
I Software Development Process: Agile Processes, Project

Planning
I Design by Contract

I Don’t forget the course evaluation
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Plan for next weeks

I Week 12: No lecture. Focus on examination proect.
I Exercises from 13:00 – 15:00

I Week 13: 12.5., 13:00 – 17:00: 10 min demonstrations of
the software

1 Show that all automatic tests run
2 TA chooses one use case

2.a Show the systematic tests for that use case
2.b Execute the systematic test manually

I Schedule will be published this week
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