
Software Engineering I (02161)
Week 11

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016

Recap

I Good Design principles
I Low coupling / high cohesion→ Law of Demeter
I DRY (Don’t repeat yourself)
I KISS (Keep it simple)

I Design Patterns

Contents

Design by Contract (DbC)
Contracts
Implementing DbC in Java
Assertion vs Tests
Invariants
Inheritance
Defensive Programming

Activity Diagrams

Summary of the course

What does this function do?

public List<Integer> f(List<Integer> list) {
if (list.size() <= 1) return list;

int p = list.elementAt(0);

List<Integer> l1 = new ArrayList<Integer>();
List<Integer> l2 = new ArrayList<Integer>();
List<Integer> l3 = new ArrayList<Integer>();

g(p,list,l1,l2,l3);

List<Integer> r = f(l1);

r.addAll(l2);
r.addAll(f(l3));

return r;
}

public void g(int p, List<Integer> list,
List<Integer> l1, List<Integer> l2, List<Integer> l3) {

for (int i : list) {
if (i < p) l1.add(i);
if (i == p) l3.add(i);
if (i > p) l2.add(i);

}
}

What does this function do?

public void testEmpy() {
int[] a = {};
List<Integer> r = f(Array.asList(a));
assertTrue(r.isEmpty());

}

public void testOneElement() {
int[] a = { 3 };
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(3),r);

}

public void testTwoElements() {
int[] a = {2, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2),r);

}

public void testThreeElements() {
int[] a = {2, 3, 1};
List<Integer> r = f(Array.asList(a));
assertEquals(Array.asList(1,2,3),r);

}
...

What does this function do?

List<Integer> f(List<Integer> a)

Precondition: a is not null
Postcondition: For all result ,a ∈ List<Integer>:
result == f (a)
if and only if

isSorted(result) and sameElements(a,result)
where

isSorted(a) if and only if
for all 0 ≤ i , j < a.size():

i ≤ j implies a.get(i) ≤ a.get(j)

and
sameElements(a,b) if and only if

for all i ∈ Integer : count(a, i) = count(b, i)

Design by contract

Contract between Caller and the Method
I Caller ensures precondition
I Method ensures postcondition

I Contracts specify what instead of how

Example Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv: i >= 0}

{context Counter :: inc ()
post: i = i@pre + 1}

{context Counter :: dec ()
pre: i > 0
post: i = i@pre - 1 }

public T n(T1 a1, .., Tn an, Counter c)
...
// Here the precondition of c has to hold
// to fulfil the contract
c.dec();
// Before returning from dec, c has to ensure the
// postcondition of dec
...

Bank example with constraints

Bank

Account

update(n : int) : void

bal : int

History

History() : void

bal : int

0..1

prev

1

1

0..1

1

owner

0..*
accounts

{context Bank
inv: accounts->forAll(a | a.owner = self)

{inv: bal >= 0}

{pre: bal + n >= 0
post: bal = bal@pre + n and
 history.oclIsNew() and
 history.bal = bal@pre and
 history.prev = history@pre}

Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev

Update operation of Account

State before executing
update(n)

{n + b >= 0}

h: History
bal=m

a: Account
bal=b

prev

State after executing
update(n)

a: Account
bal=b+n

h: History
bal=m

h1: History
bal=b

prev

prev

Example

LibraryApp::addMedium(Medium m)
pre: adminLoggedIn
post: medium = medium@pre->including(m) and

medium.library = this

LibraryApp::search(String string) : List<Medium>
post: result = medium->select(m |

m.title.contains(string) or
m.autor.contains(string) or
m.signature.contains(string))

medium = medium@pre

User::borrowMedium(Medium m)
pre: borrowedMedium->size < 10

and m != null
and not(borrowedMedium->exists(m’ | m’.isOverdue))

post: m.borrowDate = libApp.getDate() and
borrowedMedium = borrowedMedium@pre->including(m)

Postcondition

Assume that result denotes the result of the function
f (x : double).

1) post: result2 = x
2) post: result = x2

3) post: x2 = result

4) post: x = result2

Which statements are correct: (multiple answers are possible)
a) 2 is the postcondition for the function computing the square

of a number
a) 4 is the postcondition for the function computing the square

of a number
e) 3 is the postcondition of the square root function
e) 1 is the postcondition of the square root function

Precondition

I Given the contract for a method minmax(int []array) in a
class which has instance variables min and max of type
int:

pre: array 6= null and array .length > 0
post: ∀i ∈ array : min ≤ i ≤ max

I Which of the following statements is true: if the client calls
minmax such the precondition is not satisfied

a) A NullPointerException is thrown
b) An IndexOutOfBoundsException is thrown
c) Nothing happens
d) What happens depends on the implementation of minmax

Implementing DbC with assertions

I Many languages have an assert construct:
assert bexp; or assert bexp:string;

I Contract for Counter::dec(i:int)
Pre: i > 0
Post: i = i@pre − 1

void dec() {
assert i > 0 : "Precondition violated"; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == prei-1 : "Postcondtion violated"; // Postcondition

}

I assert 6= assertTrue

Implementing DbC with assertions

I Many languages have an assert construct:
assert bexp; or assert bexp:string;

I Contract for Counter::dec(i:int)
Pre: i > 0
Post: i = i@pre − 1

void dec() {
assert i > 0 : "Precondition violated"; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == prei-1 : "Postcondtion violated"; // Postcondition

}

I assert 6= assertTrue

Implementing DbC with assertions

I Many languages have an assert construct:
assert bexp; or assert bexp:string;

I Contract for Counter::dec(i:int)
Pre: i > 0
Post: i = i@pre − 1

void dec() {
assert i > 0 : "Precondition violated"; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == prei-1 : "Postcondtion violated"; // Postcondition

}

I assert 6= assertTrue

Important
I Assertion checking is switched off by default in Java

1) java -ea Main
2) In Eclipse

Implementing DbC in Java
Pre: args 6= null and args.length > 0
Post: ∀n ∈ args : min ≤ n ≤ max

public class MinMax {
int min, max;

public void minmax(int[] args) throws Error {
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; i < args.length; i++) {
int obs = args[i];
if (obs > max)
max = obs;

else if (min < obs)
min = obs;

}
assert isBetweenMinMax(args);

}

private boolean isBetweenMinMax(int[] array) {
boolean result = true;
for (int n : array) {
result = result && (min <= n && n <= max);

}
return result;

}

Assertions

I Advantage
I Postcondition is checked for each computation
I Precondition is checked for each computation

I Disadvantage
I Checking that a postcondition is satisfied can take as much

time as computing the result
→ Performace problems
I Solution:

I Assertion checking is switched on during developing,
debugging and testing and switched off in production
systems

I Only make assertions for precondition
→ Preconditions are usually faster to check
→ Contract violations by the client are more difficult to find than

postcondition violations (c.f. assertions vs tests)

Assertion vs. Tests

I Assertion
I Checks all computations (as long as assertion checking is

switched on)
I Checks also for contract violations from the client (i.e.

precondition violations)
I Tests

I Only checks test cases (concrete values)
I Cannot check what happens if the contract is violated by

the client

Invariants: Counter

Counter

inc() : void
dec() : void

i : int

{context Counter
inv: i >= 0}

{context Counter :: inc ()
post: i = i@pre + 1}

{context Counter :: dec ()
pre: i > 0
post: i = i@pre - 1 }

I Methods
I assume that invariant holds
I ensure invariants

I When does an invariant hold?
I After construction
I After each public method

Invariants

I Contstructor has to ensure invariant
public Counter() {

i = 0;
assert i >= 0; // Invariant

}

I Operations ensure and assume invariant
void dec() {

assert i >= 0; // Invariant
assert i > 0; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i--;
assert i == prei-1; // Postcondition
assert i >= 0; // Invariant

}

Contracts and inheritance

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}

Contracts and Inheritance

Liskov / Wing Substitution principle:
At every place, where one can use objects of the superclass C,
one can use objects of the subclass D

public T n(C c)
...
// has to ensure PreˆC_m
c.m();
// n can rely PostˆC_m
...

I Compare t .n(new C()) with
t .n(new D()).

→ PreC
m =⇒ PreD

m weaken precondition
→ PostD

m =⇒ PostC
m strengthen

postcondition (traditional)
→ PostD

m =⇒ (PreC
m =⇒ PostC

m) more
precise

C

m

D

m

{ context D :: m
pre: pre^D_m
post: post^D_m}

{ context C :: m
pre: pre^C_m
post: post^C_m}

Counter vs. Counter1

Counter and Counter1 are identical with the exception of
operation dec:

I Counter::dec
pre: i > 0
post: i = i@pre − 1

I Counter1::dec
pre: true
post: (i@pre > 0) =⇒ i = i@pre − 1 and

(i@pre ≤ 0) =⇒ i = 0

Which statement is true?
a) Counter is a subclass of Counter1
b) Counter1 is a subclass of Counter
c) There is no subclass relationship between Counter and

Counter1

Defensive Programming
I Can one trust the client to ensure the precondition?
void dec() { i--; }

I No. If the client calls dec() when the counter is set to 0, the
invariant is viloated as the counter gets negative

I Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i--; } }

I New Contract: No requirement for the client
I Method has to ensure it works with any argument

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1)

I under specification: we don’t say what happens when i ≤ 0
I More precise

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1) and

(i@pre ≤ 0) =⇒ (i = 0)
I Does the implementation satisfy this contract?

Defensive Programming
I Can one trust the client to ensure the precondition?
void dec() { i--; }

I No. If the client calls dec() when the counter is set to 0, the
invariant is viloated as the counter gets negative

I Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i--; } }

I New Contract: No requirement for the client
I Method has to ensure it works with any argument

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1)

I under specification: we don’t say what happens when i ≤ 0
I More precise

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1) and

(i@pre ≤ 0) =⇒ (i = 0)
I Does the implementation satisfy this contract?

Defensive Programming
I Can one trust the client to ensure the precondition?
void dec() { i--; }

I No. If the client calls dec() when the counter is set to 0, the
invariant is viloated as the counter gets negative

I Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i--; } }

I New Contract: No requirement for the client
I Method has to ensure it works with any argument

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1)

I under specification: we don’t say what happens when i ≤ 0
I More precise

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1) and

(i@pre ≤ 0) =⇒ (i = 0)
I Does the implementation satisfy this contract?

Defensive Programming
I Can one trust the client to ensure the precondition?
void dec() { i--; }

I No. If the client calls dec() when the counter is set to 0, the
invariant is viloated as the counter gets negative

I Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i--; } }

I New Contract: No requirement for the client
I Method has to ensure it works with any argument

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1)

I under specification: we don’t say what happens when i ≤ 0
I More precise

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1) and

(i@pre ≤ 0) =⇒ (i = 0)
I Does the implementation satisfy this contract?

Defensive Programming
I Can one trust the client to ensure the precondition?
void dec() { i--; }

I No. If the client calls dec() when the counter is set to 0, the
invariant is viloated as the counter gets negative

I Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i--; } }

I New Contract: No requirement for the client
I Method has to ensure it works with any argument

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1)

I under specification: we don’t say what happens when i ≤ 0
I More precise

pre: true
post: (i@pre > 0) =⇒ (i = i@pre − 1) and

(i@pre ≤ 0) =⇒ (i = 0)
I Does the implementation satisfy this contract?

Defensive Programming

PublicClass

+ n

PackagePrivateClass

m
Client

Framework

Defensive Programming

ApplicationClass

+ n

GUIClass

ApplicationLayer

PresentationLayer1 PresentationLayer2

GUIClass

Defensive Programming

Given method contracts 1)

LibraryApp::addMedium(Medium m)
pre: adminLoggedIn
post: medium = medium@pre->including(m) and

medium.library = this)

and 2)

LibraryApp::addMedium(Medium m)
post: adminLoggedIn implies

medium = medium@pre->including(m) and
medium.library = this)

Which statement is correct?
a) 1) uses defensive programming
b) 2) uses defensive programming

Contents

Design by Contract (DbC)

Activity Diagrams

Summary of the course

Activity Diagram: Business Processes

I Describe the context of the system
I Helps finding the requirements of a system

I modelling business processes leads to suggestions for
possible systems and ways how to interact with them

I Software systems need to fit in into existing business
processes

Ian Sommerville, Software Engineering – 9, 2010

Activity Diagram Example Workflow

Activity Diagram Example Operation

UML Activity Diagrams

I Focus is on control flow and data flow
I Good for showing parallel/concurrent control flow
I Purpose

I Model business processes
I Model workflows
I Model single operations

I Literature: UML Distilled by Martin Fowler

Activity Diagram Concepts

I Actions
I Are atomic
I E.g Sending a message, doing some computation, raising

an exception, . . .
I UML has approx. 45 Action types

I Concurrency

I Fork: Creates concurrent flows
I Can be true concurrency
I Can be interleaving

I Join: Synchronisation of concurrent activities
I Wait for all concurrent activities to finish (based on token

semantics)

I Decisions
I Notation: Diamond with conditions on outgoing transitions
I else denotes the transition to take if no other condition is

satisfied

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Swimlanes / Partitions

I Swimlanes show who is performing an activity

Objectflow example

Data flow and Control flow

I Data flow and control flow are shown:

Order Make
Payment

Receive
Invoice

I Control flow can be omitted if implied by the data flow:

Order Make
Payment

Receive
Invoice

Use of Activity Diagrams

I Focus on concurrent/parallel execution
I Requirements phase

I To model business processes / workflows to be automated
I Design phase

I Show the semantics of one operation
I Close to a graphic programming language

Activity Diagram vs State Machines

Contents

Design by Contract (DbC)

Activity Diagrams

Summary of the course

What did you learn?

I Requirements: Use Cases, User Stories, Use Case
Diagrams

I Testing: Systematic Tests, Test-Driven Development
I System Modelling: Class Diagram, Sequence Diagrams,

State Machines, Activity Diagrams
I Design: CRC cards, Refactoring, Layered Architecture,

Design Principles, Design Patterns
I Software Development Process: Agile Processes, Project

Planning
I Design by Contract

I Don’t forget the course evaluation

What did you learn?

I Requirements: Use Cases, User Stories, Use Case
Diagrams

I Testing: Systematic Tests, Test-Driven Development
I System Modelling: Class Diagram, Sequence Diagrams,

State Machines, Activity Diagrams
I Design: CRC cards, Refactoring, Layered Architecture,

Design Principles, Design Patterns
I Software Development Process: Agile Processes, Project

Planning
I Design by Contract

I Don’t forget the course evaluation

Plan for next weeks

I Week 12: No lecture. Focus on examination proect.
I Exercises from 13:00 – 15:00

I Week 13: 12.5., 13:00 – 17:00: 10 min demonstrations of
the software

1 Show that all automatic tests run
2 TA chooses one use case

2.a Show the systematic tests for that use case
2.b Execute the systematic test manually

I Schedule will be published this week

	Design by Contract (DbC)
	Contracts
	Implementing DbC in Java
	Assertion vs Tests
	Invariants
	Inheritance
	Defensive Programming

	Activity Diagrams
	Summary of the course

