
Software Engineering I (02161)
Week 10

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016

Last Time

I Project Planning
I Non-agile
I Agile

I Refactoring

Contents

Basic Principles of Good Design

Design Patterns

Low Copuling and High Cohesion
Low coupling

A

B

D

E

C

F

High Cohesion

Address
street
city

Company
name

Person
name
cpr-number

works at

home address

address

→ Corner stones of good design
→ Layered Architecture

Law of Demeter

Law of Demeter
I ”Only talk to your immediate friends”
I Only method calls to the following objects are allowed

I the object itself
I its components
I objects created by that object
I parameters of methods

I Also known as: Principle of Least Knowledge
I Law of Demeter = low coupling
→ delegate functionality
→ decentralised control

Hubert

Computing the price of an order

Order

calculate price
calculate base price
calculate discounts

Product
name
price

Customer
name
discount info

OrderLine
quantity

 *

1

1

Hubert

Computing the price of an order

Order

calculate price
calculate base price
calculate discounts

Product
name
price
get price for quantity

Customer
name
discount info
calculate discount

OrderLine
quantity
calculate price

 *

1

1

Hubert

DRY principle

DRY principle
Don’t repeat yourself
”Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.” The Pragmatic Programmer, Andrew

Hunt and David Thomas

I code
I documentation
I build stystem

Example: Code Duplication

Hubert

Example: Code Duplication

Company
name
c-address-street
c-address-city
printAddress

Address
street
c i ty
printAddress

Company
name

Person
name
cpr-number

works at

home address

address

Person
name
cpr-number
home-address-street
home-address-city
printAddress

works at

Hubert

DRY principle

I Techniques to avoid duplication
I Use appropriate abstractions
I Inheritance
I Classes with instance variables
I Methods with parameters

I Refactor to remove duplication
I Generate artefacts from a common source. Eg. Javadoc

Hubert

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple,
stupid)

I simplest solution first
I Strive for simplicity

I Takes time!!
I refactor for simplicity

Antoine de Saint Exupéry
”It seems that perfection is reached not when there is nothing
left to add, but when there is nothing left to take away”.

Contents

Basic Principles of Good Design

Design Patterns
Observer Pattern
Composite Pattern
Visitor Pattern
Facade
Adapter / Wrapper

Patterns in Architecture

A Pattern Language, Christopher Alexander, 1977

Hubert

Pattern and pattern language
I Pattern: a solution to a problem in a context
I Pattern language: set of related patterns
I One of the first examples from software engineering:

”Once you have initially decomposed a system into objects
[Objects from the User’s World] and refined the objects
[Engines and Holders] you need to begin collecting useful
functionality that doesn’t particularly fit into any single object.
Often many objects need to communicate with low-level (bit- or
byte-oriented) parts of the system. For example, external files
can have complex or highly encoded formats that require
substantial byte or even bit manipulation to interpret. Collect all
necessary protocol for decoding file formats or any other
particular low-level task into an object specifically designed for
the purpose. Do so even if you might otherwise spread it
around several other objects. Once you have done this you are
ready to begin testing and refining your objects [Elegance
through Debugging].” Beck, Cunningham,Using Pattern Languages for Object-Oriented Programs, OOPSLA 1987

History of Patterns

I Christopher Alexander: Architecture (1977/1978)
I Kent Beck and Ward Cunningham: Patterns for Smalltalk

applications (1987)
I Portland Pattern Repository http://c2.com/ppr

→ origin of wikis
I Design Patterns book (1994)

http://c2.com/ppr
Hubert

Design Patterns
I Defined in the Design Pattern Book

I Authors: Erich Gamma, John Vlissides, Ralph Johnson,
and Richard Helm

I Best practices for object-oriented software
→ use of distributed control

I Creational Patterns
I Abstract Factory, Builder, Factory Method, Prototype,

Singleton
I Structural Patterns

I Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
Proxy

I Behavioral Patterns
I Chain of Responsibility, Command, Interpreter, Iterator,

Mediator, Memento, Observer, State, Strategy, Template
Method, Visitor

I There are more: Implementation Patterns, Architectural
Patterns, Analysis Patterns, Domain Patterns . . .

Hubert

Places to find design patterns:

I Portland Pattern repository http:
//c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

I Wikipedia http://en.wikipedia.org/wiki/
Design_pattern_(computer_science)

I Wikipedia
http://en.wikipedia.org/wiki/Category:
Software_design_patterns

http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns
Hubert

Design Pattern structure

I Alexander: Context, Problem, Forces, Solution, Related
Pattern

I Design Patterns: Intent, Motiviation, Applicability,
Structure, Participants, Collaborations, Consequences,
Implementation, Sample Code, Known Uses, Related
Patterns

Hubert

Observer Pattern

Observer Pattern
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Hubert

Observer Pattern

Hubert

Observer Pattern

Implementation in Java

I java.util.Observer: Interface
I update(Observable o, Object aspect)

I java.util.Observable: Abstract class
I addObserver, deleteObserver
I setChanged
I notifyObservers(Object aspect)

Hubert

Example: Stack with observers
public class MyStack<E> extends Observable {

List<E> data = new ArrayList<E>();

void push(Type o) {
data.add(o);
setChanged();
notifyObserver("data elements");

}

E pop() {
E top = data.remove(data.size())’
setChanged();
notifyObserver("data elements");

}

E top() {
return data.get(data.size());

}

int size() {
return data.size();

}
String toString() {

System.out.print("[");
for (E d : data) { System.out.print(" "+d);
System.out.print("]");

}
...

}

Example: Stack observer

I Observe the number of elements that are on the stack.
I Each time the stack changes its size, a message is printed on the

console.
class NumberOfElementsObserver() implements Observer {

public void update(Observable o, Object aspect) {
System.out.println(((MyStack)o).size()+

" elements on the stack");
}

}
I Observe the elements on the stack.
I Each time the stack changes print the elements of the stack on the

console.
class StackObserver() implements Observer {

public void update(Observable o, Object aspect) {
System.out.println(o);

}
}

Example: Stack observer

Adding an observer

....
MyStack<Integer> stack = new MyStack<Integer>;
NumberOfElementsObserver obs1 =

new NumberOfElementsObserver();
NumberOfElementsObserver obs2 =

new StackObserver();
stack.addObserver(obs1);
stack.push(10);
stack.addObserver(obs2);
stack.pop();
...
stack.deleteObserver(obs1)
...

Sequence diagram for the stack

 sample

Hubert

Composite Pattern

Problem: Graphics Editor contains
I Line, Rectangle Text

I can be drawn
I Picture: can contain Line, Rectangle, Text and Picture

I can be drawn

Hubert

Hubert

Composite Pattern

Composite Pattern
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Hubert

Composite Pattern: Graphics

I Class Diagram

I Instance diagram

Example: compute costs for components

Part
cost

Assembly

*
Component

I Bike
I Frame (1000 kr)
I Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)
I Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)

I Task: add a compute cost function computing the overall
costs of a bike

Hubert

Example: compute costs for components

Component

computeCost()

{int costs = 0;
 foreach (Component c : components) {
 costs += c.computeCost();
 }
 return costs;
}

*

{return cost}

Assembly

computeCost()

Part
cost
computeCost()

Hubert

Visitor Pattern: Problem

I Define a mechanism to define algorithms on complex
datastructures without modifying the class, e.g. when the
class is provided in a library

I For example, add a computeCost algorithm without adding
the method to the class

Component
*

AssemblyPart
cost

Example: compute costs as a visitor

Visitor

visitPart(Part p)
visitAssembly(Assembly a)

Function

visitPart(Part p)
visitAssembly(Assembly a)

ComputeCosts

visitPart(Part p)
visitAssembly(Assembly a)

{ int costs = 0;
 for (Component c : a.getComponents()) {
 costs += c.acceptVisitor(this);
 }
 return costs;
}

{v.visitAssembly(this)}

{return p.getCost()}

{v.visitPart(this)}

Component

acceptVisitor(Visitor v) *

Assembly

acceptVisitor(Visitor v)

Part
cost
acceptVisitor(Visitor v)

Hubert

Compute costs as a visitor

 Copmpute Costs as Visitor

Visitor Pattern

Visitor Pattern
Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

Facade

Facade
Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the
subsystems easier to use.

Design Patterns, Addison-Wesley, 1994

Hubert

Example Compiler

Design Patterns, Addison-Wesley, 1994

Hubert

Example: Library Application

Eric Evans, Domain Driven Design, Addison-Wesley,

2004

I LibApp is the application facade
I Persistency Layer

Hubert

Adapter / Wrapper: Problem

I I want to include a text view as part of my graphic shapes
I Shapes have a bounding box
I But text views only have an method GetExtent()

Hubert

Hubert

Example: Using text views in a graphics editor

Design Patterns, Addison-Wesley, 1994

Adapter / Wrapper

Adapter / Wrapper
Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Design Patterns, Addison-Wesley, 1994

Hubert

Next week

I Design by contract
I Activity Diagrams

	Basic Principles of Good Design
	Design Patterns
	Observer Pattern
	Composite Pattern
	Visitor Pattern
	Facade
	Adapter / Wrapper

