
Software Engineering I (02161)
Week 9

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016



Last Week

I Software Development Process



Contents

Project planning

Refactoring

Refactoring Example



Project Planning

I Project plan
I Defines:

I How work is done
I Estimate

I Duration of work
I Needed resources
→ Price

I Project planning
I Proposal stage

→ Price
→ Time to finish

I Project start-up
→ Staffing, . . .

I During the project
I Progress (tracking)
I Adapt to changes



Software pricing factors

I Direct costs
I Human Resources, consultants, . . .
I Hardware costs / Software license costs

I Indirect costs / overhead:
I Running costs: buildings, electricity, . . .
I 80%— 100% of other costs

I Other factors
I Competition, . . .



Process planning and executing

Ian Sommerville, Software Engineering 9, 2010



Project scheduling

Ian Sommerville, Software Engineering 9, 2010



Traditional Processes

I Waterfall

I milestones/deliverables: system
specification, design
specification, . . .

I Typical tasks: Work focused on
system components

I Iterative Development (e.g. RUP)

I Milestones/deliverables: Each
phase: ”go ahead to next phase”

I Typical tasks: Work focused on
system components



Schedule Representation: Gantt Chart / Bar chart

Ian Sommerville, Software Engineering 9, 2010



Planning Agile Projects

I fixed general structure
→ quarterly cycle / weekly cycle practices in XP

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I time boxing
I fixed: release dates and iterations
I adjustable: scope

I Planning: Which user story in which iteration / release



Planning game

I Customer defines:
I user stories
I priorities

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story



Project estimation techniques

I Algorithmic based
I e.g. COCOMO, COCOMO II, . . .

I Experienced based
I XP: story points
I Comparision with similar tasks



Algorithmic cost modeling: COCOMO

I Constructive Cost Model (COCOMO) by Bary Boehm et
al., 1981

I based on empirical studies
I Start with software size estimation: LOC (lines of code)

I e.g. function point analysis based on requirements:
complexity of functions and data

I Effort: in person months: PM = a ∗ LOCb

I Value of a based on type of software: 2.4 ≤ a ≤ 3.6
I Value of b based on cost drivers like platform difficulty, team

experience, . . . : 1 ≤ b ≤ 1.5
I Project duration: TDEV = 3 ∗ PM0.33+0.2∗(b−1.01)

I Staffing: STAFF = PM/TDEV



Brooks’s Law

Brooks’s Law
”. . . adding manpower to a late software project makes it later.”
Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975

Assume:
I PM = 90person/month
I t(staff ) = PM/staff
I TDEV = 15months



Brooks’s Law

Brooks’s Law
”. . . adding manpower to a late software project makes it later.”
Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975

Assume
I PM = 90person/month
I t(staff ) = PM/staff
I TDEV = 15months
I t ′(statf ) = t(staff ) +

staff (staff − 1)/2 ×
1%t(staff )
Overhead based on 1% of
the development time is
devoted to talk to 1 other
developer (simplified model)

I Plus ramp-up time for the
new members



Planning Agile Projects

I fixed general structure
→ quarterly cycle / weekly cycle practices in XP

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I Releases (quarterly cycle)
I make (business) sense
I user stories / themes

I Iterations with releasees (weekly cycle)
I user stories

I time boxing
I fixed: release dates and iterations
I adjustable: scope



Scrum/XP: User story estimation (I)

I Estimation
I Estimate ideal time (e.g. person days / week) to finish a

user story
I real time = ideal time * load factor (e.g. load factor = 2)
I Add user stories to an iteration based on real time and

priority
I Monitoring

I New load factor : total iteration time / user story time
finished

→ What can be done in the next iteration
I Yesterdays weather

I only take load factor from the last iteration for planning the
next iteration

I Important: If in trouble focus on few stories and finish them
→ Don’t let deadlines slip (time boxing)



Scrum/XP: User story estimation (II)

I Estimation
I Estimate user stories relative to other user stories:

story points
I velocity : number of story points that can be done in an

iteration (initial value is a guess or comes from previous
processes)

I In an iteration: Select up to velocity amount of user stories
I Monitoring

I new velocity : story points of finished user stories per
iteration

→ What can be done in the next iteration
I user stories with story points up to new velocity



Lean / Kanban: User story estimation

I No ”iterations”: user stories come in and flow through the
system

→ Only a rough estimation of the size of the user stories
I try to level the size of the user stories
I Divide larger into smaller ones

I Measure process parameters, e.g., average cycle time
I E.g. ”After committing to a user story, it takes in average a

week to have the user story finished”
I User average cycle time and WIP (Work In Progress) Limit

to determine the capacity of the process and thus
throughput



Contents

Project planning

Refactoring

Refactoring Example



Refactoring

I Restructure the program without changing its functionality
I Goal: improved design
I Necessary step in agile processes and test-driven

development (TDD)
I Requires: sufficient (automated) tests



Refactoring
I Book: Refactoring: Improving the Design of Existing Code,

Martin Fowler, 1999
I Set of refactorings

I e.g. renameMethod, extractMethod, encapsulateField,
encapsulateCollection, . . .

→ complete list http:
//www.refactoring.com/catalog/index.html

I Set of code smells
I e.g. Duplicate Code, Long Method, Large Class, Long

Parameter List, . . .
→ http://c2.com/cgi/wiki?CodeSmell, or

http://www.codinghorror.com/blog/2006/05/
code-smells.html

I How to write unmaintainable code
http://thc.org/root/phun/unmaintain.html

I Decompose large refactorings into several small
refactorings

I Each step: compiles and passes all tests
I IDE’s have tool support for some refactorings

http://www.refactoring.com/catalog/index.html
http://www.refactoring.com/catalog/index.html
http://c2.com/cgi/wiki?CodeSmell
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://thc.org/root/phun/unmaintain.html


Example refactoring: RenameMethod

I Motivation
I Sometimes a method name does not express precisely

what the method is doing
I This can hinder the understanding of the code; thus give

the method a more intention revealing name
I Mechanics

1) Create a method with the new name
2) Copy the old body into the new method
3) In the old body replace the body by a call to the new

method; compile and test
4) Find all the references to the old method and replace it with

the new name; compile and test
5) Remove the old method; compile and test

→ Supported directly in some IDE’s



Code smells

If it stinks, change it Refactoring, Martin Fowler, 1999

I Duplicate Code
I Long Method
I Large Class
I Long Parameter List
I Divergent Change
I Shotgun Surgery
I Feature Envy
I Data Clumps
I Primitive Obsession
I Switch Statements
I Parallel Inheritance

I Lazy Class
I Speculative Generalisation
I Temporary Field
I Message Chains
I MiddleMan
I Inappropriate Intimacy
I Alternative Classes With

Different Interfaces
I Incomplete Library
I Data Class
I Refused Bequest
I Comments

http://en.wikipedia.org/wiki/Code_smell

http://en.wikipedia.org/wiki/Code_smell


Code Smell: Data Clumps

public class Person {
private String name;
private Calendar birthdate;
private Company company;
private String street;
private String city;
private String zip;
...

}

public class Company {
private String name;
private String vat_number;
private String street;
private String city;
private String zip;
...

}



Code Smell: Switch Statement

public class User {
public double computeFine() {

double fine = 0;
for (Medium m : borrowedMedia) {

if (m.overdue) {
switch (m.getType()) {

case Medium.BOOK : fine = fine + 10; break;
case Medium.DVD: fine = fine + 30; break;
case Medium.CD: fine = fine + 20; break;
default fine = fine + 5; break;

}
}

}
return fine;

}
}



Better Design

public class User {
public double computeFine() {

double fine = 0;
for (Medium m : borrowedMedia) {

if (m.overdue) { fine = fine + m.getFine();}
}
return fine;

}
}

public class Medium {
public double getFine() { return 5; }

}

public class Book extends Medium {
public double getFine() { return 10; }

}

public class DVD extends Medium {
public double getFine() { return 30; }

}

public class CD extends Medium {
public double getFine() { return 20; }

}



Using ”Template Method” Design Pattern
public class User {

public double computeFine() {
double fine = 0;
for (Medium m : borrowedMedia) {

fine =+ m.getFine();
}
return fine;

}
}

abstract public class Medium {
public double getFine() {

return isOverdue() ? getFineForOverdueMedium() : 0;
}

public class Medium {
abstract public double getFineForOverdueMedium();

}

public class Book extends Medium {
public double getFineForOverdueMedium() { return 10; }

}

public class DVD extends Medium {
public double getFine() {

if (isScratched()) return 100;
return super();

}
public double getFineForOverdueMedium() { return 30; }

}
...



Contents

Project planning

Refactoring

Refactoring Example



MarriageAgency class diagram

I Refactoring example in detail
→ http://www2.imm.dtu.dk/courses/02161/2016/

slides/refactoring_example.pdf

I Framework for running tests as soon the code changes:
→ Infinitest http://infinitest.github.io/

http://www2.imm.dtu.dk/courses/02161/2016/slides/refactoring_example.pdf
http://www2.imm.dtu.dk/courses/02161/2016/slides/refactoring_example.pdf
http://infinitest.github.io/


Remark on refactoring

I A refactoring takes a system with green tests to a system
with green tests

I Decompose a large refactoring into small refactorings
→ Don’t have failing tests (or a broken system) for too long

(e.g. days, weeks, . . . )
I Each small refactoring goes from a green test to a green

test
I Ideally, you can interrupt large refactorings to add some

functionality and then continue with the refactoring



Next Week

I Principles of Good Design
I Design Patterns


	Project planning
	Refactoring
	Refactoring Example

