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Project Planning

» Project plan
» Defines:
» How work is done
» Estimate
» Duration of work
» Needed resources
— Price
» Project planning
» Proposal stage

— Price
— Time to finish

» Project start-up
— Staffing, ...

» During the project
» Progress (tracking)
» Adapt to changes



Software pricing factors

» Direct costs

» Human Resources, consultants, ...
» Hardware costs / Software license costs

» Indirect costs / overhead:

» Running costs: buildings, electricity, . ..
» 80%— 100% of other costs

» Other factors
» Competition, ...



Process planning and executing
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Project scheduling
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lan Sommerville, Software Engineering 9, 2010



Traditional Processes

» Waterfall

> milestones/deliverables: system
specification, design
specification, ...

> Typical tasks: Work focused on
system components

> lterative Development (e.g. RUP)
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» Milestones/deliverables: Each
phase: "go ahead to next phase”

> Typical tasks: Work focused on
system components



Schedule Representation: Gantt Chart / Bar chart
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Planning Agile Projects

» fixed general structure
— quarterly cycle / weekly cycle practices in XP

as Release
lﬁ:::i;; p1| Iteration 1 p1| Iteration n Planning p1] Iteration 1 - |p1/ Tteration n
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Release 1 Release m

3m-6m

» time boxing
» fixed: release dates and iterations
» adjustable: scope

» Planning: Which user story in which iteration / release



Planning game

» Customer defines:
» user stories
» priorities
» Developer define:
» costs, risks
» suggest user stories
» Customer decides: is the user story worth its costs?

— split a user story
— change a user story



Project estimation techniques

» Algorithmic based
» e.g. COCOMO, COCOMOII, ...
» Experienced based

» XP: story points
» Comparision with similar tasks



Algorithmic cost modeling: COCOMO

v

Constructive Cost Model (COCOMO) by Bary Boehm et
al., 1981

» based on empirical studies
Start with software size estimation: LOC (lines of code)

» e.g. function point analysis based on requirements:
complexity of functions and data

Effort: in person months: PM = ax LOC?

» Value of a based on type of software: 2.4 < a < 3.6
» Value of b based on cost drivers like platform difficulty, team
experience, ...: 1 <b<15

Project duration: TDEV = 3 x PM0-33+0-2«(b—1.01)
Staffing: STAFF = PM/TDEV
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Brooks’s Law

Brooks’s Law
”...adding manpower to a late software project makes it later.”

Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975
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Brooks’s Law

Brooks’s Law
”...adding manpower to a late software project makes it later.”

Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975
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Planning Agile Projects

» fixed general structure

— quarterly cycle / weekly cycle practices in XP

Release
Planning

Release
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» Releases (quarterly cycle)

» lterations with releasees (weekly cycle)

» make (business) sense
» user stories /| themes

» user stories

» time boxing

» fixed: release dates and iterations
» adjustable: scope




Scrum/XP: User story estimation (1)

» Estimation
» Estimate ideal_time (e.g. person days / week) to finish a
user story
» real_time = ideal_time * load_factor (e.g. load_factor = 2)
» Add user stories to an iteration based on real_time and
priority
» Monitoring
» New load factor: total_iteration_time / user_story_time
finished
— What can be done in the next iteration

» Yesterdays weather
» only take load_factor from the last iteration for planning the
next iteration
» Important: If in trouble focus on few stories and finish them
— Don’t let deadlines slip (time boxing)



Scrum/XP: User story estimation (Il)

» Estimation
» Estimate user stories relative to other user stories:
story_points
» velocity: number of story points that can be done in an
iteration (initial value is a guess or comes from previous

processes)
» In an iteration: Select up to velocity amount of user stories
» Monitoring
» new_velocity: story points of finished user stories per
iteration

— What can be done in the next iteration
» user stories with story points up to new_velocity



Lean / Kanban: User story estimation

» No "iterations”: user stories come in and flow through the
system
— Only a rough estimation of the size of the user stories
» try to level the size of the user stories
» Divide larger into smaller ones
» Measure process parameters, e.g., average cycle time
» E.g. "After committing to a user story, it takes in average a
week to have the user story finished”
» User average_cycle_time and WIP (Work In Progress) Limit
to determine the capacity of the process and thus
throughput
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Refactoring

Restructure the program without changing its functionality
Goal: improved design

Necessary step in agile processes and test-driven
development (TDD)

Requires: sufficient (automated) tests
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Refactoring

>

Book: Refactoring: Improving the Design of Existing Code,
Martin Fowler, 1999
Set of refactorings

» e.g. renameMethod, extractMethod, encapsulateField,
encapsulateCollection, ...

— complete list http:
//www.refactoring.com/catalog/index.html

Set of code smells

» e.g. Duplicate Code, Long Method, Large Class, Long
Parameter List, ...

— http://c2.com/cgi/wiki?CodeSmell, or
http://www.codinghorror.com/blog/2006/05/
code—-smells.html

» How to write unmaintainable code
http://thc.org/root/phun/unmaintain.html

Decompose large refactorings into several small
refactorings

» Each step: compiles and passes all tests

IDE’s have tool support for some refactorings


http://www.refactoring.com/catalog/index.html
http://www.refactoring.com/catalog/index.html
http://c2.com/cgi/wiki?CodeSmell
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://thc.org/root/phun/unmaintain.html

Example refactoring: RenameMethod

» Motivation
» Sometimes a method name does not express precisely
what the method is doing
» This can hinder the understanding of the code; thus give
the method a more intention revealing name
» Mechanics

1) Create a method with the new name

2) Copy the old body into the new method

3) In the old body replace the body by a call to the new
method; compile and test

4) Find all the references to the old method and replace it with
the new name; compile and test

5) Remove the old method; compile and test

— Supported directly in some IDE’s



Code smells

/f It StlnkS, Change It Refactoring, Martin Fowler, 1999

» Duplicate Code » Lazy Class

» Long Method
» Large Class

» Speculative Generalisation
» Temporary Field

» Message Chains

» MiddleMan

» Inappropriate Intimacy

» Alternative Classes With
Different Interfaces

» Long Parameter List
» Divergent Change
» Shotgun Surgery

» Feature Envy

» Data Clumps

» Primitive Obsession
» Switch Statements
» Parallel Inheritance

http://en.wikipedia.org/wiki/Code_smell

» Incomplete Library
» Data Class

» Refused Bequest
» Comments


http://en.wikipedia.org/wiki/Code_smell

Code Smell: Data Clumps

public class Person {
private String name;
private Calendar birthdate;
private Company company;
private String street;
private String city;
private String zip;

}

public class Company {
private String name;
private String vat_number;
private String street;
private String city;
private String zip;



Code Smell: Switch Statement

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
if (m.overdue) {
switch (m.getType()) {
case Medium.BOOK : fine = fine + 10; break;

case Medium.DVD: fine = fine + 30; break;
case Medium.CD: fine = fine + 20; break;
default fine = fine + 5; break;

}
}

return fine;



Better Design

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
if (m.overdue) { fine = fine + m.getFine();}
}

return fine;

}

public class Medium {
public double getFine() { return 5; }
}

public class Book extends Medium {
public double getFine() { return 10; }
}

public class DVD extends Medium {
public double getFine() { return 30; }
}

public class CD extends Medium {
public double getFine() { return 20; }
}



Using "Template Method” Design Pattern

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
fine =+ m.getFine();
}

return fine;

}

abstract public class Medium {
public double getFine() {
return isOverdue () ? getFineForOverdueMedium() : 0;

}

public class Medium {
abstract public double getFineForOverdueMedium() ;

}

public class Book extends Medium {
public double getFineForOverdueMedium() { return 10; }

}

public class DVD extends Medium {
public double getFine () {
if (isScratched()) return 100;
return super();

}
public double getFineForOverdueMedium() { return 30; }
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MarriageAgency class diagram
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» Refactoring example in detalil

— http://www2.imm.dtu.dk/courses/02161/2016/
slides/refactoring_example.pdf

» Framework for running tests as soon the code changes:
— Infinitest http://infinitest.github.io/


http://www2.imm.dtu.dk/courses/02161/2016/slides/refactoring_example.pdf
http://www2.imm.dtu.dk/courses/02161/2016/slides/refactoring_example.pdf
http://infinitest.github.io/

Remark on refactoring

» A refactoring takes a system with green tests to a system
with green tests
» Decompose a large refactoring into small refactorings
— Don’t have failing tests (or a broken system) for too long
(e.g. days, weeks, ...)
» Each small refactoring goes from a green test to a green

test
» Ideally, you can interrupt large refactorings to add some

functionality and then continue with the refactoring



Next Week

» Principles of Good Design
» Design Patterns
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