Software Engineering | (02161)
Week 9

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016

=
—
=

i

Last Week

» Software Development Process

Contents

Project planning
Refactoring

Refactoring Example

Project Planning

» Project plan
» Defines:
» How work is done
» Estimate
» Duration of work
» Needed resources
— Price
» Project planning
» Proposal stage

— Price
— Time to finish

» Project start-up
— Staffing, ...

» During the project
» Progress (tracking)
» Adapt to changes

Software pricing factors

» Direct costs

» Human Resources, consultants, ...
» Hardware costs / Software license costs

» Indirect costs / overhead:

» Running costs: buildings, electricity, . ..
» 80%— 100% of other costs

» Other factors
» Competition, ...

Process planning and executing

Identify
Constraints

Define
Milestones
and
Deliverables,

Identify
Risks

«system» [unfinished]

[project

Project Planner

Do the Work

Define Project
Schedule

Monitor Progress
Against Plan

[minor problems and slippages]

finished]
-®

[no problems]

[serious
problems]

e T

Initiate Risk

Qitigaﬁon Actio

) (

Replan
Project

lan Sommerville, Software Engineering 9, 2010

Project scheduling

Identify Identify Activity Estimate Resources) Allocate People Create Project
Activities Dependencxes for Activities to Activities Charts

Software requ;remenl's Bar charts describing
and design information the project schedule

lan Sommerville, Software Engineering 9, 2010

Traditional Processes

» Waterfall

> milestones/deliverables: system
specification, design
specification, ...

> Typical tasks: Work focused on
system components

> lterative Development (e.g. RUP)

Phases
[incepton| [[Frersioen]
Business Modeling
Analysis & Design T ea——
—
Test .
Deployment ‘
Configuration i
& Change Mgmt
Project —— e “
(L[o] [o] g g | o | o
Iterations

» Milestones/deliverables: Each
phase: "go ahead to next phase”

> Typical tasks: Work focused on
system components

Schedule Representation: Gantt Chart / Bar chart

Week 0 1 2 3 4 5 6 7 8 9 10 1 i
& stert | i
m]
I I
2 i
P M1/T1)
RE]
|
bh ¢ M3/128T4)
15
T
4 (M4/T1eT2)
T6
7 =
1
¢ (2718 l |
T8 S
T
b (Ms/T3 & T6)
T9
@ (M6/17 &Ts)
T10
¢ M7/T9)
T
@ (M8/T10&T11
T2
Finish 4

lan Sommerville, Software Engineering 9, 2010

Planning Agile Projects

» fixed general structure
— quarterly cycle / weekly cycle practices in XP

as Release
lﬁ:::i;; p1| Iteration 1 p1| Iteration n Planning p1] Iteration 1 - |p1/ Tteration n
Iw—4w 1w-4w (but fixed)
Release 1 Release m

3m-6m

» time boxing
» fixed: release dates and iterations
» adjustable: scope

» Planning: Which user story in which iteration / release

Planning game

» Customer defines:
» user stories
» priorities
» Developer define:
» costs, risks
» suggest user stories
» Customer decides: is the user story worth its costs?

— split a user story
— change a user story

Project estimation techniques

» Algorithmic based
» e.g. COCOMO, COCOMOII, ...
» Experienced based

» XP: story points
» Comparision with similar tasks

Algorithmic cost modeling: COCOMO

v

Constructive Cost Model (COCOMO) by Bary Boehm et
al., 1981

» based on empirical studies
Start with software size estimation: LOC (lines of code)

» e.g. function point analysis based on requirements:
complexity of functions and data

Effort: in person months: PM = ax LOC?

» Value of a based on type of software: 2.4 < a < 3.6
» Value of b based on cost drivers like platform difficulty, team
experience, ...: 1 <b<15

Project duration: TDEV = 3 x PM0-33+0-2«(b—1.01)
Staffing: STAFF = PM/TDEV

v

v

v

v

Brooks’s Law

Brooks’s Law
”...adding manpower to a late software project makes it later.”

Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975

90

tis) = els

80
70

60

o Assume:

» PM = 90person/month
> {(staff) = PM/staff

» TDEV = 15months

tin month

40

30

20

10

Brooks’s Law

Brooks’s Law
”...adding manpower to a late software project makes it later.”

Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975

90

) = e/s ——
£(5) = ts)+ §*(s+1)2°(1(8)"1%) ——
o

erhead(x} Assume

PM = 90person/month

t(staff) = PM/staff

TDEV = 15months

t'(statf) = t(staff) +

staff(staff —1)/2 x

1% (staff)

Overhead based on 1% of

the development time is

devoted to talk to 7 other

developer (simplified model)

> Plus ramp-up time for the
new members

80

70

60

vvyyvyy

50

tin month

40

30

20

Planning Agile Projects

» fixed general structure

— quarterly cycle / weekly cycle practices in XP

Release
Planning

Release

1| Iteration 1 p1| Iteration n Planning

o]

Iw—4w

Iteration 1

~ Pl

Iteration n

Iw—4w (but fixed)

Release 1

Release m

3m-6m

» Releases (quarterly cycle)

» lterations with releasees (weekly cycle)

» make (business) sense
» user stories /| themes

» user stories

» time boxing

» fixed: release dates and iterations
» adjustable: scope

Scrum/XP: User story estimation (1)

» Estimation
» Estimate ideal_time (e.g. person days / week) to finish a
user story
» real_time = ideal_time * load_factor (e.g. load_factor = 2)
» Add user stories to an iteration based on real_time and
priority
» Monitoring
» New load factor: total_iteration_time / user_story_time
finished
— What can be done in the next iteration

» Yesterdays weather
» only take load_factor from the last iteration for planning the
next iteration
» Important: If in trouble focus on few stories and finish them
— Don’t let deadlines slip (time boxing)

Scrum/XP: User story estimation (Il)

» Estimation
» Estimate user stories relative to other user stories:
story_points
» velocity: number of story points that can be done in an
iteration (initial value is a guess or comes from previous

processes)
» In an iteration: Select up to velocity amount of user stories
» Monitoring
» new_velocity: story points of finished user stories per
iteration

— What can be done in the next iteration
» user stories with story points up to new_velocity

Lean / Kanban: User story estimation

» No "iterations”: user stories come in and flow through the
system
— Only a rough estimation of the size of the user stories
» try to level the size of the user stories
» Divide larger into smaller ones
» Measure process parameters, e.g., average cycle time
» E.g. "After committing to a user story, it takes in average a
week to have the user story finished”
» User average_cycle_time and WIP (Work In Progress) Limit
to determine the capacity of the process and thus
throughput

Contents

Project planning
Refactoring

Refactoring Example

Refactoring

Restructure the program without changing its functionality
Goal: improved design

Necessary step in agile processes and test-driven
development (TDD)

Requires: sufficient (automated) tests

v

v

v

v

Refactoring

>

Book: Refactoring: Improving the Design of Existing Code,
Martin Fowler, 1999
Set of refactorings

» e.g. renameMethod, extractMethod, encapsulateField,
encapsulateCollection, ...

— complete list http:
//www.refactoring.com/catalog/index.html

Set of code smells

» e.g. Duplicate Code, Long Method, Large Class, Long
Parameter List, ...

— http://c2.com/cgi/wiki?CodeSmell, or
http://www.codinghorror.com/blog/2006/05/
code—-smells.html

» How to write unmaintainable code
http://thc.org/root/phun/unmaintain.html

Decompose large refactorings into several small
refactorings

» Each step: compiles and passes all tests

IDE’s have tool support for some refactorings

http://www.refactoring.com/catalog/index.html
http://www.refactoring.com/catalog/index.html
http://c2.com/cgi/wiki?CodeSmell
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://thc.org/root/phun/unmaintain.html

Example refactoring: RenameMethod

» Motivation
» Sometimes a method name does not express precisely
what the method is doing
» This can hinder the understanding of the code; thus give
the method a more intention revealing name
» Mechanics

1) Create a method with the new name

2) Copy the old body into the new method

3) In the old body replace the body by a call to the new
method; compile and test

4) Find all the references to the old method and replace it with
the new name; compile and test

5) Remove the old method; compile and test

— Supported directly in some IDE’s

Code smells

/f It StlnkS, Change It Refactoring, Martin Fowler, 1999

» Duplicate Code » Lazy Class

» Long Method
» Large Class

» Speculative Generalisation
» Temporary Field

» Message Chains

» MiddleMan

» Inappropriate Intimacy

» Alternative Classes With
Different Interfaces

» Long Parameter List
» Divergent Change
» Shotgun Surgery

» Feature Envy

» Data Clumps

» Primitive Obsession
» Switch Statements
» Parallel Inheritance

http://en.wikipedia.org/wiki/Code_smell

» Incomplete Library
» Data Class

» Refused Bequest
» Comments

http://en.wikipedia.org/wiki/Code_smell

Code Smell: Data Clumps

public class Person {
private String name;
private Calendar birthdate;
private Company company;
private String street;
private String city;
private String zip;

}

public class Company {
private String name;
private String vat_number;
private String street;
private String city;
private String zip;

Code Smell: Switch Statement

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
if (m.overdue) {
switch (m.getType()) {
case Medium.BOOK : fine = fine + 10; break;

case Medium.DVD: fine = fine + 30; break;
case Medium.CD: fine = fine + 20; break;
default fine = fine + 5; break;

}
}

return fine;

Better Design

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
if (m.overdue) { fine = fine + m.getFine();}
}

return fine;

}

public class Medium {
public double getFine() { return 5; }
}

public class Book extends Medium {
public double getFine() { return 10; }
}

public class DVD extends Medium {
public double getFine() { return 30; }
}

public class CD extends Medium {
public double getFine() { return 20; }
}

Using "Template Method” Design Pattern

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
fine =+ m.getFine();
}

return fine;

}

abstract public class Medium {
public double getFine() {
return isOverdue () ? getFineForOverdueMedium() : 0;

}

public class Medium {
abstract public double getFineForOverdueMedium() ;

}

public class Book extends Medium {
public double getFineForOverdueMedium() { return 10; }

}

public class DVD extends Medium {
public double getFine () {
if (isScratched()) return 100;
return super();

}
public double getFineForOverdueMedium() { return 30; }

Contents

Project planning
Refactoring

Refactoring Example

MarriageAgency class diagram

© Marriacefae @ Customer

% birtYear: int

- CUSToN | 9% interests: Arravlist<!
% name: String

% phone: int

Ssex: boolean

@ addCustlnteres
@ addCustomer()
® findCustormer() *
& main()

@ matchCustomel

o Custormer()
@ addinterest)

» Refactoring example in detalil

— http://www2.imm.dtu.dk/courses/02161/2016/
slides/refactoring_example.pdf

» Framework for running tests as soon the code changes:
— Infinitest http://infinitest.github.io/

http://www2.imm.dtu.dk/courses/02161/2016/slides/refactoring_example.pdf
http://www2.imm.dtu.dk/courses/02161/2016/slides/refactoring_example.pdf
http://infinitest.github.io/

Remark on refactoring

» A refactoring takes a system with green tests to a system
with green tests
» Decompose a large refactoring into small refactorings
— Don’t have failing tests (or a broken system) for too long
(e.g. days, weeks, ...)
» Each small refactoring goes from a green test to a green

test
» Ideally, you can interrupt large refactorings to add some

functionality and then continue with the refactoring

Next Week

» Principles of Good Design
» Design Patterns

	Project planning
	Refactoring
	Refactoring Example

