
Software Engineering I (02161)
Week 8

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016



Last Week

I State machines
I Layered Architecture: GUI
I Layered Architecture: Persistency Layer



Contents

Software Development Process

Version control



Software Development Challenges

I Challenges of Software Development
I On time
I In budget
I No defects
I Customer satisfaction



Software Development Process

I Activities in Software Development
I Understand and document what the customer wants:

Requirements Engineering
I How to build the software: Design
I Build the software: Implementation
I Validate: Testing, Verification, Evaluation

→ Set of techniques: Use cases, CRC cards, refactoring,
test-driven development, . . .

I How to apply the techniques:
→ Different software development processes: Waterfall,

Iterative processes, agile, lean, . . .



Waterfall process

I 1970: Used by Winston W. Royce in a article as a an
example of how not to develop software

I 1985: Waterfall was required by the United States
Department of Defence from its contractors

Hubert



Delays in waterfall processes

D I TA

Time

Features

Release date

Hubert



Iterative Processes: E.g. (Rational) Unified Process
(1996)

Hubert



Agile Software Development Methods (1999)
I Examples

I Extreme Programming (XP) (1999), Scrum (1995–2001),
Feature Driven Development (FDD) (1999), Lean Software
Development (2003), . . .

I (Kanban (2010): often seen as a method, but it is a tool to
improve processes)

I Common characteristic
I Driven by very small functionalities with value to the

customer: e.g. user stories (XP) / Backlog items (Scrum) /
smallest marketable feature (Lean/Kanban) / . . .

I Short iterations:
I Each iteration produces a software increment
= Small batch sizes

Ideal batch size: one (single piece flow)
I New ”extreme” practices like short iterations, pair

programming, and test-first.
I Applies values and principles from Lean Production
I Based on the Agile Manifesto (2001)

Hubert



Example of a User story card

Kent Beck, Extreme Programming 2nd ed.

I User story card: A contract between the customer and the
devloper to talk about the user story



Manifesto for Agile Software Development (2001)

”We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

I Individuals and interactions over processes and tools
I Working software over comprehensive documentation
I Customer collaboration over contract negotiation
I Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”
http://www.agilemanifesto.org

http://www.agilemanifesto.org


Agile processes and Lean Software Development

Functionality

Time
AD IT

AD IT
R

AD IT
R

F 1

F 2

F 3

F 4

F 5

F 6

F 7

1. Iteration

Hubert



Agile processes and Lean Software Development

1. Iteration

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

F 1

F 2

F 3

F 8

F 4

F 5

F 6

Hubert



Agile processes and Lean Software Development

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration

Hubert



Resource Triangle

I Can only fix two of them at the same time

Hubert



Resource Triangle: Waterfall

D I TA

Time

Features

Release date

Hubert



Resource Triangle: Agile

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration

Hubert



eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.

Hubert

Hubert



Sit-together

Kent Beck, Extreme Programming 2nd ed.

Hubert



Visual wall

Kent Beck, Extreme Programming 2nd ed.

Hubert



Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia

I Robert Martin (Uncle Bob) about ”The Land that Scrum
Forgot”
http://www.youtube.com/watch?v=hG4LH6P8Syk
→ History about agile methods, the agile manifesto, and

Scrum and its relationshop to XP

http://www.youtube.com/watch?v=hG4LH6P8Syk
Hubert



Burn Down Charts

Wikipedia

Hubert

Hubert



Lean Software Development

I Lean Production:
I Reduce the amount of waste in the production process
I Generate flow

I Waste: resources used with does not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .

Hubert



Cycle time

Cycle time
Time it takes to go through the process one time

cycle time =
number of features

feature implemantion rate

I Example: Waterfall
I Batch size = number of features in an iteration
I Software: 250 features, feature implementation rate = 5

features/week
I cycle time = 250 / 5 = 50 weeks
I Overall time: 50 weeks
→ 1 cycle

Hubert



Goal: Reducing the cycle time

I Reduce batch size: 1 feature in an iteration
I Software: 250 features, feature implementation rate = 5

features/week

cycle time =
number of features

feature implemantion rate

I Agile: cycle time = 1 / 5 = 8 hours
→ 250 cycles
I Advantages

I Process adapts to changes in requirements
I Process improvements and fine tuning

Hubert

Hubert



Generating flow using Pull and Kanban

WIP = Work in Progress Limit

1
324

A T IWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

8

7

9

10

5

6

Blah
Composite

Leaf Assembly4 2 3

3 3 3 3

Hubert



Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net
Hubert



Online Kanban Tool: Trello

I www.trello.com: Electronic Kanban board useful for
your project

I Example Kanban board https:
//trello.com/b/4wddd1zf/kanban-workflow

www.trello.com
https://trello.com/b/4wddd1zf/kanban-workflow
https://trello.com/b/4wddd1zf/kanban-workflow


Week 8—13

Implementation process

1 Choose a set of user stories to implement
1 Select the user story with the highest priority

a) Create the acceptance test for the story in JUnit
b) Implement the user story test-driven, creating additional

tests as necessary and guided by your design
→ based on the classes, attributes, and methods of the model
→ implement only the classes, attributes, and methods needed

to implement the user story
→ adapt your design as necessary!!
→ Criteria: 100% code coverage of the application logic based

on the tests you have

c) Refactor system (= Design)

3 Repeat step 2 with the user story with the next highest
priority

Hubert



Contents

Software Development Process

Version control



What is version control

Version Control
I Stores and manages versions of documents (e.g. .java

files)
I Manages concurrent work on documents
I Manages different software release versions
I Various systems: Concurrent Versions System (CVS),

Apache Subversion (SVN), Git, Team Foundation Server
(TFS) . . .



CVS

I The presentation focusses on CVS, but the concepts also
apply to SVN too and to a lesser extend to Git and TFS

I CVS = Concurrent Versions System
I One central repository
I Command line tools, IDE support
I Files have a tree of versions: branching
I Release: File versions having same tag
I Versions: diffs (differences) to previous versions



Use cases of CVS

I Creating a repository
I Creating a project
I Checking out a project
I Updating a project
I Committing changes
I Tagging versions
I Branching versions
I Merging branches



Creating a repository

I http://repos.gbar.dtu.dk

http://repos.gbar.dtu.dk


Creating a repository

The GBar supports CVS, SVN, and Git



Creating a repository



Creating a repository



Create a project and share it

I Menu: Team→share project and create a new
repository location



Checking out a project
I CVS Repository Exploring perspective



Package Explorer Team Menu Project



Steps in Developing a Program using CVS

1 Create Repository
2 Create a project and share the project
3 For all the programming tasks in an iteration

3.1 Run tests; Update project; run tests; fix tests
3.2 Work on the implementation so that all tests run
3.3 Update the repository with your changes

3.3.1 Update the project; run tests
3.3.2 Fix all compile time errors and all broken tests;
3.3.3 Commit your changes

4 Tag you files for major project milestones
Important : Commit only if all tests pass



Committing changes

I Fails if someone else committed the file before
I If commit fails

1 update, this automatically tries to merge the changes,
2 compile: fix possible compilation errors
3 run the tests: fix failing tests
4 commit again



Update a project

I Gets newest version of the file
I If conflicts

→ text files are merged
→ other files are overwritten
I based on lines
I successful merge: lines are added from both source files
I unsuccessful merge: the same line is changed in both

source files



Unsuccessful merge

I Same lines have been changed
public Address() {

// TODO Auto-generated constructor stub
}

<<<<<<< Address.java
public String getStrasse() { // Local change

=======
public String getGade() { // Committed change

>>>>>>> 1.2
return street;

}



Package Explorer Compare With Menu



Compare result: Compare with latest from HEAD



Next Week

I Project planning (traditional and agile)
I Refactoring
I (Design Patterns)


	Software Development Process
	Version control

