
Software Engineering I (02161)
Week 3

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016



Recap

I Requirements Engineering
I functional / non-functional requirements
I Elicitation, Documentation, Validation

I Glossary
I Use Cases

I use case diagrams
I detailed use cases descriptions

I User Stories



Use Case Diagram

Administrator

Plan Trip

Book Trip

Cancel Trip

User
Manage Trip

Manage Flights

Manage Hotels

TravelAgency

«extends»

«extends»

Notation is important
I Actor: Stick figure
I Relationship actor, use case: solid line, no arrow head
I Relationship use case, user case: broken line with arrow

and <<extends>> or <<includes>>

I Relationship actor, actor: Generalization: solid line with
closed arrow head

I System boundary: Box

Hubert

Hubert



Contents

Software Testing

Acceptance tests

JUnit

Test Driven Development

How calendars and dates work in Java

Mock objects



Purpose of tests

I Goal: finding bugs

Edsger Dijkstra
”Tests can show the presence of bugs, but not their absence.”

I Types of bugs: requirement-, design-, implementation
errors

I Types of testing:
I validation testing

I Does the software conform to the requirements?
I Have we built the right system?

I defect testing
I Does the software has any unexpected behaviour (e.g.

crashes)?
I Have we built the system right?

Hubert



Validation testing vs defect testing

Validation Test (Quality Assurance (QA))
I Start city is Copenhagen, destination city is Paris. The

date is 1.3.2012. Check that the list of availabe flight
contains SAS 1234 and AF 4245

Defect Test (QA and stress tests)
I Start city is Copenhagen, the name of the destination city

contains the Crtl-L character.
I Check that the software reacts reasonable and does not

crash



Types of tests

1. Developer tests (validation testing)
a) Unit tests (single classes and methods)
b) Component tests (single components = cooperating

classes)
c) System tests / Integration tests (cooperating components)

2. Release tests (validation and defect testing, QA)
a) Scenario based testing
b) Performance testing

3. User tests (validation tests)
a) Acceptance tests

Hubert



Contents

Software Testing

Acceptance tests

JUnit

Test Driven Development

How calendars and dates work in Java

Mock objects



Acceptance Tests

I Tests defined by / with the help of the user
I based on the requirements

I Traditionally
I manual tests
I by the customer
I after the software is delivered
I based on use cases / user stories

I Agile software development
I automatic tests: JUnit, Fit, . . .
I created before the user story is implemented

Hubert



Example of acceptance tests

I Use case
name: Login Admin
actor: Admin
precondition: Admin is not logged in
main scenario

1. Admin enters password
2. System responds true

alternative scenarios:
1a. Admin enters wrong password
1b. The system reports that the password is wrong and the use

case starts from the beginning

postcondition: Admin is logged in



Manual tests
Successful login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

Failed login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

I Automatic test for the main scenario

Hubert



Manual vs. automated tests

I Manual tests should be avoided
I They are expensive (time and personal) to execute: Can’t

be run often
I Automated tests

I Are cheap (time and personal) to execute: Can be run as
soon something is changed in the system
→ immediate feedback if a code change introduced a bug
→ Regression tests

I More difficult (but not impossible) when they include the UI
→ Solution: Test under the UI

I Robert Martin (Uncle Bob) in
http://www.youtube.com/watch?v=hG4LH6P8Syk

I manual tests are immoral from 36:35
I how to test applications having a UI from 40:00

http://www.youtube.com/watch?v=hG4LH6P8Syk
Hubert



Testing under the UI

Domain Layer
e.g. User, Book, ...

Persistency Layer

User

Application Layer
e.g. LibraryApp

Thin Presentation Layer

Hubert

Hubert



Automatic tests
Successful login

@Test
public void testLoginAdmin() {

LibraryApp libApp = new LibraryApp();

assertFalse(libApp.adminLoggedIn());

boolean login = libApp.adminLogin("adminadmin");

assertTrue(login);
assertTrue(libApp.adminLoggedIn());

}

Failed login

@Test
public void testWrongPassword() {

LibraryApp libApp = new LibraryApp();

assertFalse(libApp.adminLoggedIn());

boolean login = libApp.adminLogin("admin");

assertFalse(login);
assertFalse(libApp.adminLoggedIn());

}

Hubert



Contents

Software Testing

Acceptance tests

JUnit

Test Driven Development

How calendars and dates work in Java

Mock objects



JUnit

I Framework for automated tests in Java
I Developed by Kent Beck and Erich Gamma
I Unit-, component-, and acceptance tests
I http://www.junit.org

I xUnit

http://www.junit.org


JUnit and Eclipse
I JUnit 4.x libraries

I New source directory for tests

Hubert



JUnit 4.x structure

import org.junit.Test;
import static org.junit.Assert.*;

public class C {
@Test
public void m1() {..}
@Test
public void m2() throws Exception {..}
...

}

I Independent tests
I No try-catch blocks (exception: checking for exceptions)

Hubert



JUnit 4.x structure (Before and After)

...
public class C {

@After
public void n2() {...}
@Before
public void n1() {...}
@Test
public void m1() {..}
@Test
public void m2() {..}
...

}

Hubert

Hubert



Struture of test cases

I Test class = one use case
I Test method = one scenario
I Use inheritance to share sample data between use cases

public class SampleDataSetup {
@Before()
public void setUp() { .. }
@After()
public void tearDown { .. }
... }

public class TestBorrowBook extends SampleDataSetup {..}

Hubert



JUnit assertions

General assertion

import static org.junit.Assert.*;

assertTrue(bexp)
assertTrue(msg,bexp)

Specialised assertions for readability

1. assertFalse(bexp)

2. fail()

3. assertEquals(exp,act)

4. assertNull(obj)

5. assertNotNull(obj)
...

Hubert



JUnit: testing for exceptions

I Test that method m() throws an exception MyException
@Test
public void testMThrowsException() {

...
try {

m();
fail(); // If we reach here, then the test fails because

// no exception was thrown
} catch(MyException e) {

// Do something to test that e has the correct values
}

}

I Alternative
@Test(expected=MyException.class)
public void testMThrowsException() {..}

Hubert



Contents

Software Testing

Acceptance tests

JUnit

Test Driven Development
Test Driven Development
Example of Test-Driven Development
Refactoring

How calendars and dates work in Java

Mock objects



Test-Driven Development

I Test before the implementation
I Tests = expectations on software
I All kind of tests: unit-, component-, system tests



Test-Driven Development

Traditional testing

understand
requirements

understand
requirements

[no bugs]

[bugs found]

System

UserDeveloper Quality Assurance (QA)

fix bugs

implement

run the tests

create tests

define
system requirements

Tests

SystemRequirments

UserRequirments

define
user requirements

Hubert



Test-Driven Development

Traditional

understand
requirements

understand
requirements

[no bugs]

[bugs found]

System

UserDeveloper Quality Assurance (QA)

fix bugs

implement

run the tests

create tests

define
system requirements

Tests

SystemRequirments

UserRequirments

define
user requirements

Moving to TDD

understand
requirements

create tests

[no defect]

[defect found]

System

UserDeveloper Quality Assurance (QA)

fix bugs

implement

Find defects

create tests

define
system requirements

Tests

SystemRequirments

UserRequirments

define
user requirements

Hubert



Test-Driven Development

Traditional

understand
requirements

understand
requirements

[no bugs]

[bugs found]

System

UserDeveloper Quality Assurance (QA)

fix bugs

implement

run the tests

create tests

define
system requirements

Tests

SystemRequirments

UserRequirments

define
user requirements

Real TDD

create test

[more features]

[no more features]

select the
feature / user story
with highest priority

[no defect]

[defect found]

System

UserDeveloper Quality Assurance (QA)

fix bugs

implement and
refactor

Find defects

create test

Test

Feature / User Story

UserRequirments

define
user requirements

Hubert



TDD cycle

I Repeat for functionality, bug, . . .
red : Create a failing test
green: Make the test pass
refactor : clean up your code

I Until: no more ideas for tests
I Important:

I One test at a time
I Implement only as much code so that the test does not fail.

I If the method looks incomplete,
→ add more failing tests that force you to implement more code

Hubert



Ideas for tests

1. Use case scenarios (missing functions): Acceptance tests
2. Possibility for defects (missing code): Defect tests
3. You want to write more code than is necessary to pass the

test
4. Complex behaviour of classes: Unit tests
5. Code experiments: ”How does the system behave, if . . . ”
→ Make a list of new test ideas



TDD example: Borrow Book

I Use case
name: borrow book
description: the user borrows a book
actor: user
main scenario:

1. the user borrows a book
alternative scenario

1. the user wants to borrow a book, but has already 10 books
borrowed

2. the system presents an error message

Hubert



Create a test for the main scenario

I test data:
I a user with CPR ”1234651234” and book with signature

”Som001”
I Test case

I Retrieve the user with CPR number ”1234651234”
I Retrieve the book by the signature ”Som001”
I The user borrows the book
I The book is in the list of books borrowed by that user

Hubert



Create a test for the main scenario

@Test
public void testBorrowBook() throws Exception {

String cprNumber = "1234651234";
User user = libApp.userByCprNumber(cprNumber);
assertEquals(cprNumber,user.getCprNumber());

String signature = "Som001";
Book book = libApp.bookBySignature(signature);
assertEquals(signature,book.getSignature());

List<Book> borrowedBooks = user.getBorrowedBooks();
assertFalse(borrowedBooks.contains(book));

user.borrowBook(book);

borrowedBooks = user.getBorrowedBooks();
assertEquals(1,borrowedBooks.size());
assertTrue(borrowedBooks.contains(book));

}

Hubert



Implement the main scenario

public void borrowBook(Book book) {
borrowedBooks.add(book);

}

Hubert



Create a test for the alternative scenario

I test data:
I a user with CPR ”1234651234”, book with signature

”Som001”, and 10 books with signatures ”book1”, . . . ,
”book10”

I Test case
I Retrieve the user with CPR number ”1234651234”
I Retrieve and borrow the books with signature ”book1”, . . . ,

”book10”
I Retrieve and borrow the book by the signature ”Som001”
I Check that a TooManyBooksException is thrown

Hubert

Hubert



Implementation of the alternative scenario

public void borrowBook(Book book) throws TooManyBooksException {
if (borrowedBooks.size() >= 10) {
throw new TooManyBooksException();

}
borrowedBooks.add(book);

}

Hubert



More test cases

I What happens if book == null in borrowBook?
I Test Case:

I Retrieve the user with CPR number ”1234651234”
I Call the borrowBook operation with the null value
I Check that the number of borrowed books has not changed

Hubert



Final implementation so far

public void borrowBook(Book book) throws TooManyBooksException {
if (book == null) return;
if (borrowedBooks.size() >= 10) {
throw new TooManyBooksException();

}
borrowedBooks.add(book);

}

Hubert



Another example

I Creating a program to generate the n-th Fibonacci number
→ Codemanship’s Test-driven Development in Java by Jason

Gorman
http://youtu.be/nt2KKUSSJsY

I Note: The video uses JUnitMax to run JUnit tests
automatically whenever the test files change
(junitmax.com)

I A tool with similar functionality but free is Infinitest
(https://infinitest.github.io)

http://youtu.be/nt2KKUSSJsY
junitmax.com
https://infinitest.github.io
Hubert



Refactoring and TDD

I Third step in TDD
I restructure the system without changing its functionality
I Goal: improve the design of the system, e.g. remove code

duplication (DRY principle)
I Necessary step
I Requires good test suite
→ later in the course more about refactoring mechanics

Hubert



TDD: Advantages

I Test benefits
I Good code coverage: Only write production code to make a

failing test pass
I Design benefits

I Helps design the system: defines usage of the system
before the system is implemented

→ Testable system



Contents

Software Testing

Acceptance tests

JUnit

Test Driven Development

How calendars and dates work in Java

Mock objects



How to use Date and calendar (I)

I Date class deprecated
I Calendar and GregorianCalendar classes
I An instance of Calendar is created by

new GregorianCalendar() // current date and time
new GregorianCalendar(2011, Calendar.JANUARY,10)

I Note that the month is 0 based (and not 1 based). Thus 1
= February.

I Best is to use the constants offered by Calendar, i.e.
Calendar.JANUARY

Hubert



How to use Date and calendar (I)

I One can assign a new calendar with the date of another by
newCal.setTime(oldCal.getTime())

I One can add years, months, days to a Calendar by using
add: e.g.
cal.add(Calendar.DAY_OF_YEAR,28)

I Note that the system roles over to the new year if the date
is, e.g. 24.12.2010

I One can compare two dates represented as calendars
using before and after, e.g.
currentDate.after(dueDate)

Hubert



Contents

Software Testing

Acceptance tests

JUnit

Test Driven Development

How calendars and dates work in Java

Mock objects



Problems

I How to test that a book is overdue?
I Borrow the book today
I Jump to the data in the future when the book is overdue
I Check that the book is overdue

LibraryApp
..
getDate
...

{
return new GregorianCalendar()
}

I How do we jump into the future?
→ Replace the GregorianCalendar class by a mock object

that returns fixed dates
I Problem: Can’t replace GregorianCalendar class

Hubert



Creating a DateServer class

{
return new GregorianCalendar();
}

LibraryApp
..
getDate
...

DateServer

getDate
dateServer

{
return dateServer.getDate()
}

Hubert



Creating a DateServer class

I The DateServer can be mocked

return a fixed date
LibraryApp

..
getDate
...

mock(DateServer.class)

getDate
dateServer

{
return dateServer.getDate()
}

Hubert



How to use

I Import helper methods
import static org.mockito.Mockito.*;

I Create a mock object on a certain class
SomeClass mockObj = mock(SomeClass.class)

I return a predefined value for m1(args)
when(mockObj.m1(args)).thenReturn(someObj);

I verify that message m2(args) has been sent
verify(mockObj).m2(args);

Hubert



Mock Example 1: Overdue book

@Test
public void testOverdueBook() throws Exception {

DateServer dateServer = mock(DateServer.class);
libApp.setDateServer(dateServer);
Calendar cal = new GregorianCalendar(2011,Calendar.JANUARY,10);
when(dateServer.getDate()).thenReturn(cal);
...
user.borrowBook(book);
newCal = new GregorianCalendar();
newCal.setTime(cal.getTime());
newCal.add(Calendar.DAY_OF_YEAR, MAX_DAYS_FOR_LOAN + 1);
when(dateServer.getDate()).thenReturn(newCal);
assertTrue(book.isOverdue());

}

Hubert



LibraryApp Code

{
return new GregorianCalendar();
}

LibraryApp
..
getDate
...

DateServer

getDate
dateServer

{
return dateServer.getDate()
}

public class LibraryApp {
private DateServer ds = new DateServer();
public setDateServer(DateServer ds) { this.ds = ds;}
...

}

public class DateServer {
public Calendar getDate() {

return new GreogorianCalendar();
}

}

Hubert



Testing for e-mails

Returns a fixed
date

Remembers that
an e-mail was
sent

LibraryApp
..
getDate
sendEmailReminder
...

mock(MailService.class)

send

mock(DateServer.class)

getDate
dateServer

mailService

{
return dateServer.getDate()
}

{
..
mailService.send(...)
..
}

@Test
public void testEmailReminder() throws Exception {

DateServer dateServer = mock(DateServer.class);
libApp.setDateServer(dateServer);

MailService mailService = mock(MailService.class);
libApp.setMailService(mailService);
...
libApp.sendEmailReminder();
verify(mailService).send("..","..","..");

}

Hubert



Verify

Check that no messages have been sent

verify(ms,never()).send(anyString(), anyString(), anyString());

Mockito documentation: http://docs.mockito.
googlecode.com/hg/org/mockito/Mockito.html

http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html
Hubert



Exercises and Next Week

I Exercises
I Programming exercise number 3
I Exercise 3: Acceptance Tests and TDD

I Systematic tests and code coverage


	Software Testing
	Acceptance tests
	JUnit
	Test Driven Development
	Test Driven Development
	Example of Test-Driven Development
	Refactoring

	How calendars and dates work in Java
	Mock objects

