Software Engineering | (02161)
Week 2

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016

=
—
=

i

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks

Basic Activities in Software Development

nderstand and document what kind of the software the
customer wants

— Requirements Analysis
— Requirements Engineering

» Determine how the software is to be built
— Design

» Build the software
— Implementation

» Validate that the software solves the customers problem
— Testing

Hubert

Requirements Analysis

Requirements Analysis

Understand and document the kind of software the customer
wants

» Describe mainly the external behaviour of the system and
not how it is realised

ot how
» Techniques for discovering, understanding, and
documentation

» Glossary: Understand the problem domain
Use Cases: Understand the functionality of the system
User Stories: Understand the functionality of the system

Hubert

Types of Requirements

» Functional Requirements
» E.g. the user should be able to plan and book a trip
» Non-functional Requirements

» All requirements that are not functional
» E.g.

» Where should the software run

» What kind of Ul the user prefers

Travel Agency Example: User Requirements

The travel agency TravelGood comes to you as software
developers with the following proposal for a software project:
» Problem description / user requirements
» TravelGood wants to offer a trip-planning and booking

application to its customers. The application should allow
the customer to plan trips consisting of flights and hotels.
First the customer should be able to assemble the trip,
before he then books all the flights and hotels in on step.
The user should be able to plan several trips. Furthermore
it should be possible to cancel already booked trips.

— Not enough: Text needs to be analysed and system
requirements extracted

Travel Agency

» Functional Requirements

» “plan a trip, book a trip, save a planned trip for later
booking, ...”

» Non-functional requirements

» "System should be a Web application accessible from all
operating systems and most of the Web browsers”

» "It must be possible to deploy the Web application in a
standard Java application servers like GlassFish or Tomcat”

» "The system should be easy to handle (it has to a pass a
usability test)”

2
¢

Hubert

Non exclusive checklist of non-functional requirements
Non-Functional
| Requirements
| Product Organizational External D
Requirements Requirements Requirements
Regylatory | Z?hlcaﬁ
Req its Requirements

f P l Legislative
q

q

l

Efficiency I Dependability

Requirements Requirements

Usability
Requirements

|

Performance Space Accounting Safety/Security
Requirements Requirements Requi Requi

lan Sommerville, Software Engineering - 9

Operational |c

Hubert

Characteristics of good requirements

» Testability
— manual/automatic acceptance tests
» Measurable

» Not measurable: The system should be easy to use by
medical staff and should be organised in such a way that
user errors are minimised

Characteristics of good requirements

» Testability
— manual/automatic acceptance tests
» Measurable

» Not measurable: The system should be easy to use by
medical staff and should be organised in such a way that
user errors are minimised

» Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced 2
users shall not exceed two per hour of system use.

Hubert

Possible measures

Property Measure

Speed Processed transactions/second
User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips
Ease of use Training time

Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

lan Sommerville, Software Engineering - 9

Hubert

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks

Requirements engineering process

A spiral view of the requiremi " i engineering process
lequiremenvs
pecification

System Requnremens
Spedification and
Modeling

User Requ:remems

Business Requirements
N\ specificationm

fequirements
Validation

Requirements
Elicitation

Requirements
Elicitation
—

Reviews

System Requirements
Document

lan Sommerville, Software Engineering - 9

Hubert

Requirements Engineering Process: Techniques

» Elicitation
» Problem descriptioné'
> Interviews{—
» Glossary &—

» Use Cases / User Stories &—
C Specification
7 Glossary

» Use Cases / User Stories

» Validation
> Inspection
» Validity, Consistent, Complete, Realistic, .. .
» Creation of tests

Hubert

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks

Glossary

» Purpose: capture the customer’s knowledge of the
domain so that the system builders have the same
knowledge

glossary (plural glossaries)

”1. (lexicography) A list of terms in a particular domain of
knowledge with the definitions for those terms.” (Wikitionary)

» List of terms with explanations

» Terms can be nouns (e.g. those mentioned in a problem
description) but also verbs or adjectives e.t.c.

Example

Part of a glossary for the travel agency

User: The person who is using the travel agency

Trip: A trip is a collection of hotel and flight informations. A trip can be
booked and, if booked, cancelled.

Booking a trip: A trip is booked by making a hotel reservation for the
hotels on the trip and a flight booking for the flights of the trip

Flight booking: The flight reservation is booked with the flight agency
and is payed.

Reserving a hotel: A hotel is reserved if the hotel informed that a
guest will be arriving for a certain amount of time. It is possible that the
hotel reservation requires a credit card guarantee.

» Warning
» Capture only knowledge relevant for the application
» Don't try to capture all possible knowledge
——"/-

Hubert

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks

Use Case
——————

Use cases capture functional requirements

— Naming convention: "Do something” (= functionality): "verb
+ noun”

Use Case
A Use Case is of interaction scenarios of one or several

actors with the system serving alEommon goal. \
——
| Use Case Diagram]

A use case diagram provides and overview over the use cases
of a system and who is using the functionality.

Detailed Use Case description

A detailed use case description describes the interaction
between the user and the system as a set of scenarios

Hubert

Hubert

(Detailed) Use Case Example: search available flights

e: search available flights

L_description®yhe user checks for available flights

actoy. user

main scena;io:

1. The user provides information about the city to travel to and
the arrival and departure dates

2. The system provides a list of available flights with prices
and booking number

alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data

3. The use case starts from the beginning
he input data is correct, I the city exists (e.g. is correctly
Speled), the-arrivar aate ana the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Hubert

Use Case Diagram

Ad—or

Hubert

Hubert

Hubert

Relations between use cases

extends: optional part as ause includes: mandatory part of a
case use case

o) O
o
/ «mcllpde

TravelAgency

-7 AN

\
«extepds» «extends»
User PR \
\
z i AN

Supply username Use NemID
and password
—_——

Hubert

&ms WS
£ lewel)
P «incll}xde» SJ < ‘(W I
o« \‘@ 147
7? «extend «extends»

Use extends/include sparingly (

TravelAgency

User

-
2 \

2lpply username .
nd password _ @
\r 3\4

level

» Use extends/include only when:
» Interactions are reused by other use cases, e.g. login?
» Relationship between abstract and concrete (cf. next slide)
» A use case contains optional interactions and it makes
sense to describe these as a use case themselves
» Extends/include don’t show the order of interactions in a
use case

— When in doubt, don’t use extends/include

Hubert

Types of use case diagrams

a) Business use cases (kite level use case (from Alistair
Cockburn))

b) System use cases / sea level use case

c) Use cases included in sea level use cases are called fish
level use cases by Alistair Cockburn
J

UML Destilled, Martin Fowler

Hubert

Business Use Cases

TravelAgency

Book Trip I~ o
“wextends»
~o

User

1

|

Manage Flight;

Manage Hotels

Manage Trip

|

«extends» 7

—

—

—/

Administrator

Hubert

System Use Cases Part |

TravelAgency

Search Avaialbe Flights),
N

«exiends»

earch Available Hotel ﬂ‘i"ﬂ{’g:

User

<&

Add Hotel to Trip_ D™ ™ ov 1%
«exiendsy
_ «Extgifdsh
Delete Hotel from Trip)” 7 /
sextefids»
.
o
Delete Flight from Trip)”

c\ :
Add Flight to Trip cexignds»

Plan Trip

7

7

ﬁw:-ms.r

User

TravelAgency

Delete Trip

Book Trip

=

e

Hubert

System Use Cases Part |l

Administrator

TravelAgency

Add Flight to DB

List Flights in DB

Delete Flight from DB

Upload Flights from File

Save Flights to File

Administrator

TravelAgency

Add Hotel to DB

List Hotels in DB

Delete Hotel from DB

Upload Hotels from File

Save Hotels to File

Detailed use cases: Template

Template to be used in this course for detailed use case
descriptions

name: The name of the use case
description: A short description of the use case
actor: One or more actors who interact with the system
wjg_n; Possible assumptions on the system state to enable the
use case (optional)
main scenario: A description of the main interaction between user and
system
— Note: should only explain what the system does from the
user’s perspective
alternative scenarios:
(note: Used for everything that does not fit in the above categories

>fpo st conctinan)

— To be used in the examination report

Hubert

Detailed use case search available flights

name: search available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and
the arrival and departure dates
2. The system provides a list of available flights with prices
and booking number

alternative scenario:
1a. The input data is not correct (see below)
2. The system notifies the user of that fact and terminates and
starts the use case from the beginning
2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Use case scenarios

qY<TER

ACToR

» Use case scenarios = interaction between an actor and the
system
» Anything the user does with the system
» System responses
» Effects visible/important to the customer

» Not part of the)'beraction: What the system internally does

Hubert

Hubert

Detailed use case cancel trip

name: cancel trip
description: cancels a trip that was booked

actor: user
precondition:
t» the trip must have been booked
» the first date for a hotel or flight booking must be one day in
the future

main scenario:
1. user selects trip for cancellation
2. the system shows how much it will cost to cancel the trip
3. selected trip will be cancelled after a confirmation

)\i/\\-c\'aal/s\)t» ﬂ Ml-o‘f' Ll\H Mo.; E'}flf_lp‘

Hubert

Detailed use case plan trip

This use case extends other use cases
—
name: plan trip

description: The user plans a trip consisting of hotels and
flights

actor: user
main scenario:

repeat any of the following operations in any order until
finished

1. search available fquht(iuse case)

add flight to trip (use case)
search available hotels (use case)
add hotel to trip (use cage

list trip (use case

delete hotel from trip (use case)

delete flight from tip (use case)

Note: the trip being planned is referred to as the current
trip

SRS IEEEEN

N

Hubert

Detailed use case save trip

name: save trip

description: provides the current trip with a name and
saves it for later retrieval

actor: user
precondition: the current trip is not empty
main scenario:

1. user provides a name for the trip 2 . SH gl'tbu (oL V‘W\
alternative scenarios: ‘ .
1: the name is not valid 'n Seye
2: notify the user of the fact and end the use case
1: a trip with the name already exists

2: ask the user if the trip should overwrite the stored trip
3a: If yes, overwrite the stored trip
3b: If no, end the use case

Hubert

Use cases and system boundary

Actors and use cases depend on the sllstem boundary:

’:Dr.Suam 'DJ ole ¢ omposi

> System Decomposition

4
J » System Boundary: Travel Agency

TRAVEL AGENCY

TRAVQL AGEWCY
‘Fhwr B [Back £
(_/_/ .Y
-

» System Boundary: Front end of the
travel agency

» System Boundary: Back end end of
the travel agency

— X)
e S

—— FRouT_EMD

Hubert

Hubert

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks

User slories

v

Introduced with Extreme Programming
Focus on features
"As a CustomeClIgwant to book and plan a single flight from
Cope n to Paris”.
» Recommended, but
<goal/desire> so that <be
Difference to Use Cases:

» Contai main scenario

» Are concrete (i.e. use concrete data)

» User stories can be defined for non-functional requirements
E—

v

xclusive: "As a <role>, | want
. ——— —

v

"The search for a flight from Copenhagen to Paris shall take
less than 5 seconds”

Documented by user story cards, i.e.

v

Hubert

Example of a User story card

Blw Deyolopoment \coth
FUNC. TEST

C Story and Task Card

pate: 31441 TYPE OF ACTIVITY: NEW: X FIX: __ ENHANCE:

STORY NUMBER: 5% [/S PRIORITY: USER: TECH:

PRIOR REFERENCE:

RISK: TECHESTIMATE:

TASK DESCRIPTION:
SPLIT COLN-When the 0O fake chas 1 Fhe wnddle of the Blw Pay Reviod wie

ol wivd fope e 57 meék of fhe ;wﬂ Fhe OLDCOLA vats avol fhe 29D
urek@”\vr m,? uu{ ol Hhe NEW Shsald occer tavtometion (/ b«vc(
NOTES.»,\)7 Fom des :

fnaf‘ bt (’)a\, ov 06 lc Hhe 0 DLh o0 H"zA‘D

1
weele u‘d The plant men‘h/ mxm mufuia{ﬂ Lic Hhe 220 Vjee’/r*w"/u;.w/
wthatiwe cun 0w ie ((»vg ’T(),mel iy L"U/zo//r/vsw 9/‘/‘/'101«’[

TASK TRACKING: 01056 Puy Ad (ustomsnt. (’wa'fﬁ’ FU«‘% Bousndary i Place (w DEEwtExposs dOLA

Date Smms “To Do Comments B

Kent Beck, Extreme Programming, 1st ed.
» User story card: A contract between the customer and the
devloper to talk about the user story

User stories and requirements engineering

» Important: Requirements engineering is done in parallel
with the development of the system
» User story cards are created by the customer and
discussed with the developer
» User story cards are assigned to iterations based on
importance to the customer
» Within each iteration the user stories are refined and tests
are implemented
» Two level approach
1) Make coarse user stories for planning
— Epics
2) Detail user stories when they are about to be implemented

— Compare with waterfall: Already in the requirements phase
make all the requirements as precise and detailed as
possible

Software Development processes

» Traditional (waterfall process)

REQ. [DESIGN| |QBL | TEST
A RELEASES

» Agile proce\f(/s;g (1mp|ified) (user story driveln)
Usdus2 6z , o e ufi-’/lug,,
—REQUWREMENTS | |
TEST
DESIGN
1 INPLE MENTATIOV

Pe 4 R drm(«’ A.RELEAS EJ>

PIAVNING
EPICS

WSER S
v}

|

Hubert

Comparision: User Stories / Use Cases

Use Story

@concrete ><severa! abstract scenarios
scenario/feature with one goal

» only functional

» functional + non-functional oy e
s requirements
—

—
requirements

Hubert

Combining Use Cases and User Stories

1. Use cases:
» Gives an overview over the possible interactions
— use case diagram
2. Derive user stories from use case scenarios (i.e. main-
and alternative)
3. Implement the system driven by user stories
» Note that different scenarios in use cases may have
different priorities
— Not necessary to implement all scenarios of a use case
immediately

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks

Summary

>

Requirements analysis is about finding out what the
software should be able to do, not how

Types: functional and non-functional requirements
Qualities: testable and measurable

Process: Discover (Elicitation), Document (Specification),
Validate (Validation)

Glossary: Defines a common language between customer
and software developer

Use cases

» Used for both finding and documenting the requirements
» What are the functions the user can perform with the
software?

User stories

» Focus on user relevant scenarios
» Can be used for functional and non-functional requirements
» Can be derived from use case scenarios

Exercises

» For this week
» http://www2.imm.dtu.dk/courses/02161/2016/
slides/exercise02.pdf
» Still ongoing: programming exercises
» http://www2.imm.dtu.dk/courses/02161/2016/
index2.html

http://www2.imm.dtu.dk/courses/02161/2016/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2016/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2016/index2.html
http://www2.imm.dtu.dk/courses/02161/2016/index2.html

Contents

What are software requirements?
Requirements Engineering Process
Glossary

Use Cases

User Stories

Summary

Programming Tips and Tricks
Booleans
Delegation

Booleans

if (string.equals ("adminadmin")) {
adminLoggedIn = True,
} else {

adminLoggedIn = feri=e;

} drue

Hubert

Booleans

if (string.equals ("adminadmin")) {
adminLoggedIn = true;
} else {

adminLoggedIn = false;
}

Don’t use conditionals to set a boolean variable
» Better

adminLoggedIn = string.equals ("adminadmin") ;
————————

Hubert

Booleans

if (JadminLoggedIn ———fetee) {
t%row new OperationNotAllowedException();
} else {

3£ L]

merererere Ty trwe—= books.add (book) ;

}

Hubert

Booleans

if (adminLoggedIn == false) {
throw new OperationNotAllowedException();
} else {
if (adminLoggedIn == true) books.add (book);

}

Use boolean variables directly; don’t compare boolean
variables with true or false

» Better
if ('adminLoggedIn) {

throw new OperationNotAllowedException () ;
} else {

books.add (book) ;
}

> ¢
if ('adminLoggedIn) {
throw new OperationNotAllowedException () ;

}
books.add(book);l

Su\a.rv‘

Hubert

Delegate Responsibility

» Original
public List<Book> search(String string) {

List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if y(book.getSignature () .contains (string) ||
book.getTitle () .contains (string) ||
book.getAuthor () .contains (string)) {

booksFound.add (book) ;
}
}

return booksFound;
}

y book matiT;H, | S\vg)

Hubert

Delegate Responsibility

» LibraryApp delegates contains functionality to class book
public List<Book> search(String string) {

List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.contains (string)) |
-e' booksFound.add (book) ‘\A(AJI ml"k
h]) —D gzwu.
“‘ t booksF d;
: return booksFoun Caw Id VOV‘(AA

» In class Book We J)» [el a
public boolean contains (String string) { V:CV. ‘

return signature.contains (string) |
W‘&Jl‘ a title.contains (string) ||
author.contains (string) - 2
}
Jaond
Advantages: Q
g

» Separation of concerns: LibraryApp is searching, Book is
providing matching criteria

» Matching criteria can be changed without affecting the
search logic

Hubert

	What are software requirements?
	Requirements Engineering Process
	Glossary
	Use Cases
	User Stories
	Summary
	Programming Tips and Tricks
	Booleans
	Delegation

