Software Engineering | (02161)
Week 10

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2015

=
—
=

i

Last Time

» Project Planning
» Non-agile
» Agile

» Refactoring

Contents

Basic Principles of Good Design

Design Patterns

Low Copuling and High Cohesion

Low coupling

High Cohesion

Person Address
home address»
name street

cpr-number city

«adfiress

Compan

name

workp at»

— Corner stones of good design
— Layered Architecture

Law of Demeter

Law of Demeter

» "Only talk to your immediate friends”
» Only method calls to the following objects are allowed

» the object itself

» its components

» objects created by that object
» parameters of methods

» Also known as: Principle of Least Knowledge
» Law of Demeter = low coupling

— delegate functionality

— decentralised control

Computing the price of an order

[owe || wosee |

an Order an Order Line | aProduct ‘ aCustomer

calculatePrice

getQuantity |
getProduct | |
Customer
aProduct I —
e TR | | calculate price name
| calculate base price T | discount info
getPricingDetails ' ! calculate discounts
calculateBasePrice OrderLine Product
| | | quantity name
‘ | | T | price

| getDiscountinfo |

| | i

calculateDiscounts

Computing the price of an order

r
| S — I

aProduct aCustomer
S l I Order Customer
&——— | | | calculate price name
calculatePrice calculate base price 1| discount info

‘ — — getPrice(quantity: number) | calculate discounts calculate discount

‘ U ‘

‘ | getbiscountedValue (an Order) | OrderLine Product

o quantity name
‘ o | getBaseVale | calculate price 1| price
M | get price for quantity

e " s mmmrem

DRY principle

DRY principle

Don’t repeat yourself

"Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.” mme eragmatic programmer, Andrew

Hunt and David Thomas

» code
» documentation
» build stystem

Example: Code Duplication

Person

name
cpr-number
companyName
home-address-street
home-address-city
printAddress

works at»

Company

name
c-address-street
c-address-city
printAddress

Example: Code Duplication

Person

Person Address
name —
cpr-number name b ome addre s lree
home-address-street cpr-number city

home-address-city printAddress

printAddres

address
workp at»

Company

Company

name workp ate
c-address-street

name

c-address-city
printAddress

DRY principle

» Techniques to avoid duplication

» Use appropriate abstractions

» Inheritance

Classes with instance variables
» Methods with parameters

» Refactor to remove duplication
» Generate artefacts from a common source. Eg. Javadoc

v

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple,
stupid)

» simplest solution first
» Strive for simplicity

» Takes time!!
» refactor for simplicity

Antoine de Saint Exupéry
"It seems that perfection is reached not when there is nothing
left to add, but when there is nothing left to take away”.

Contents

Basic Principles of Good Design

Design Patterns
Observer Pattern
Composite Pattern
Visitor Pattern
Template Method
Facade
Adapter / Wrapper

Patterns in Architecture

182 EATING ATMOSPHERE

. we have already pointed out how vitally important all kigds
of communal cating azc in helping to maintain 2 bond among 4
group of people—coMMUNAL EATING (147) 5 and we have given
some idea of how the common eating may be placed as part of th
kitchen itself—rarmiiouse xireuEn (139). This pattem
some details of the eating atmosphere.

oo

When people eat together, they may actually be together
in spirit—or they may be far apart. Some rooms invite
people to eat leisurely and comfortably and feel together,
while others force people to cat as quickly as possible sg
they can go somewhere else to relax.

Above all, when the table has the same light all over it, snd
has the same light level on the walls around it, the light does
nothing to hold people together; the intensity of fecling is quite
likely to disolve; there is ittle sense that there is any special
kind of gathering. But when there is a soft light, hung low over
the table, with dark walls around so that this one point of light
lights up people’s faces and is a focal point for the whole group,
then a meal can become a special thing indeed, @ bond, com-
‘munion.

“Therefore:

Put a heavy table in the center of the eating space—
large enough for the wholc family or the group of people
using it. Put a light over the table to create a pool of light
over the group, and enclosc the space with walls or with
contrasting darkness. Make the space large enough so the
chairs can be pulled back comfortably, and provide shelves
and counters close at hand for things related to the meal.

A Pattern Language, Christopher Alexander, 1977

BUILDINGS

Get the details of the light from PooLs oF LiGuT (252); and
choose the colors to make the place warm and dark and com-
fortable at night—wary corors (250); put a few soft chairs
nearby—DIFFERENT CHAIRS (251); or put BUILT-IN SEATS
(202) with big cushions against one wall; and for the storage
spice—oPEN suELVES (200) and WAIST-HIGH SHELF (201). . . .

Pattern and pattern language

» Pattern: a solution to a problem in a context
» Pattern language: set of related patterns

History of Patterns

v

Chstiopher Alexander: Architecture (1977/1978)
Kent Beck and Ward Cunningham: Patterns for Smalltalk
applications (1987)
Portland Pattern Repository http://c2.com/ppr
— origin of wikis
Design Patterns book (1994)

v

v

v

http://c2.com/ppr

Design Patterns

» Defined in the Design Pattern Book
» Authors: Erich Gamma, John Vlissides, Ralph Johnson,
and Richard Helm
Best practices for object-oriented software
— use of distributed control
Creational Patterns
» Abstract Factory, Builder, Factory Method, Prototype,
Singleton
Structural Patterns
» Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
Proxy
Behavioral Patterns
» Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer, State, Strategy, Template
Method, Visitor
There are more: Implementation Patterns, Architectural
Patterns, Analysis Patterns, Domain Patterns ...

v

v

v

v

v

Places to find design patterns:

» Portland Pattern repository http:
//c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

» Wikipedia http://en.wikipedia.org/wiki/
Design_pattern_ (computer_science)

» Wikipedia
http://en.wikipedia.org/wiki/Category:
Software_design_patterns

http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Design Pattern structure

» Alexander: Context, Problem, Forces, Solution, Related
Pattern

» Design Patterns: Intent, Motiviation, Applicability,
Structure, Participants, Collaborations, Consequences,
Implementation, Sample Code, Known Uses, Related
Patterns

Observer Pattern

Observer Pattern

Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

observers

—— change notification
———- requests, modifications

subject

Observer Pattern

Subject

observers

Attach(Observer)
Detach(Observer)

NOtify() ©=nvmmd--

?

C iect

Observer

for all o in observers {
} o—>Update()

subject

Update()

?

ConcreteObserver

GetState() O---

subjectState

return subjectState

Update() o--

| - | observerState =
subject—>GetState()

observerState

Observer Pattern

aConcreteSubject aConcreteObserver anotherConcreteObserver
FL SetState() |’L
| Notify()
Update()
GetState()
I
Update() _
GetState() J
-

Implementation in Java

» java.util.Observer: Interface
» update(Observable o, Object aspect)
» java.util.Observable: Abstract class

» addObserver, deleteObserver
» setChanged
» notifyObservers(Object aspect)

Example: Stack with observers

public class MyStack<E> extends Observable {
List<E> data = new ArrayList<E>();

void push (Type o) {
data.add (o) ;
setChanged () ;
notifyObserver ("data elements");

}

E pop () {
E top = data.remove (data.size())’
setChanged () ;
notifyObserver ("data elements");

}

E top() {
return data.get (data.size());

}

int size() {
return data.size();
}
String toString() {
System.out.print ("[");
for (E d : data) { System.out.print (" "+d);
System.out.print (" 1");

Example: Stack observer

» Observe the number of elements that are on the stack.

» Each time the stack changes its size, a message is printed on the
console.

class NumberOfElementsObserver () implements Observer

public void update (Observable o, Object aspect) {
System.out.println (((MyStack)o) .size()+
" elements on the stack");
}
}
» QObserve the elements on the stack.

» Each time the stack changes print the elements of the stack on the
console.

class StackObserver () implements Observer {

public void update (Observable o, Object aspect) {
System.out.println (o) ;

}

Example: Stack observer

Adding an observer

MyStack<Integer> stack = new MyStack<Integer>;
NumberOfElementsObserver obsl =

new NumberOfElementsObserver (stack);
NumberOfElementsObserver obs2 =

new StackObserver (stack);
stack.addObserver (obsl) ;
stack.push (10);
stack.addObserver (obs2) ;
stack.pop () ;

stack.deleteObserver (obsl)

Sequence diagram for the stack

sample

:Client ‘ ‘

s:Stack ‘ ‘ data:List ‘

‘ 0:Numb.OfElem.Obs.

T
push(1)

add(1) N

T T
I |
] I
I I
L |
I i
Dsetchanged() 1

bnonfyobservers(data elemenns)
A update(s,"data elements")

|
|
|
|
|
|
|
|
|
|
|
H
|
|

Composite Pattern

Problem: Graphics Editor
» Line, Rectangle Text
» can be drawn
» Picture: can contain Line, Rectangle, Text and Picture
» can be drawn

Composite Pattern

Composite Pattern
Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Graphic
Draw()

I | I] graphics

Line Rectangle Text Picture kO —————]
- — g

__________________ forall g in graphics
Oraw(| | Drawo Draw() | | Drawp o
B

GetChild(int) '----| add g to list of graphics ‘31

Composite Pattern: Graphics

» Class Diagram

Graphic

Draw()

A

[I [1 graphics
Line Rectangle Text Picture il
8§ E N R R e G
|

» Instance diagram

aPicture

GetChild(int)

—---I add g to list of graphics ﬁ

aRectangle

Example: compute costs for components

Component

P

Part Assembly

cost

» Bike
» Frame (1000 kr)
» Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)
» Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)
» Task: add a compute cost function computing the overall
costs of a bike

Example: compute costs for components

Component

computeCost()

A

Part

cost

computeICOSt()

{return cost}

Assembly
computeCost()
|

{int costs = 0;
foreach (Component ¢ : components) {
costs += c.computeCost();

}

return costs;

Visitor Pattern: Problem

» Define a mechanism to define algorithms on complex
datastructures without modifying the class, e.g. when the
class is provided in a library

» For example, add a computeCost algorithm without adding
the method to the class

Component

Part Assembly

cost

Example: compute costs as a visitor

Component

acceptVisitor(Visitor v) | *
VAN

Visitor

visitPart(Part p)
visitAssembly(Assembly a)

Part

Assembly

T

cost

acceptvisit‘or(visitor v)

acceptVisitor(Visitor v)

Function

ComputeCosts

visitPart(Part p)

 visitPart(Part p)

y(Assembly a)

visitAssembly(Assembly a) -~ —

I
{v.visitPart(this)}

i

Il
‘ {v.visitAssembly(this)}

i
|
|
N
|
{return p.getCost()}

{ int costs = 0;

return costs;

for (Component ¢ : a.getComponents()) {
costs += c.acceptVisitor(this);

Compute costs as a visitor

Copmpute Costs as Visitor

< ‘ ’ bike:Assembly ‘ ’ v:ComputeCosts ‘ ’ frame:Part
T
[|__acceptvisitor) [|

!
|
—

visitAssembly(bike) |

{:} getParts()

acceptVisitor(v) N

e visitPart(frame)

getCosts() 5
N A Il

Visitor Pattern

Visitor Pattern

Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

Template Method Problem

Overdue message for Book:
1 compute due date for a book

a get the current date
b add the max days for loan for the book

2 check if the current date is after the due date
Overdue message for CD:

1 compute due date for a cd

a get the current date
b add the max days for loan for the cd

2 check if the current date is after the due date

Template method

» Create a template method in class Medium:
1 compute due date for a medium

a get the current date
b add the max days for loan for that medium

2 check if the current date is after the due date
» In book method for getMaxDaysForLoan returning 4 weeks
» In CD getMaxDaysForLoan returns 2 weeks

Template Method

Medium

getMaxDaysForLoan():int
isoverdue():bool

T

Book Cd

getMaxDaysForLoan():int getMaxDaysForLoan():int

public abstract class Medium {

public boolean isOverdue () {
if (!isBorrowed()) {
return false;
}
Calendar date = libApp.getDate();
Calendar dueDate = new GregorianCalendar () ;
dueDate.setTime (borrowDate.getTime ()) ;
dueDate.add (Calendar.DAY_OF_YEAR, getMaxDaysForLoan());
return date.after (dueDate);

}

public abstract int getMaxDaysForLoan () ;
}

Template Method

Template Method

Define the skeleton of an algortihm in an operation, deferring
some steps to subclasses. Template Method lets sublcasses
redefine certain steps of an algorithm without changing the

algorithm’s structure.

AbstractClass

templateMethod
primitiveMethod1
primitiveMethod2

i

ConcreteClass1

ConcreteClass2

primitiveMethod1 primitiveMethod1
primitiveMethod2 primitiveMethod2

The template method defines its algortihm based on
primitiveMethod1, ...

abstract, but they could also define some default

PrimitiveMethod1, ... in AbstractClass are usually
behavior.

Template Method

D

Save() AddDocument()
Open() OpenDocument()
Close() DoCreateDocumenty()
DoRead() CanOpenDocumenty()

AboutToOpenDocument()
MyDocument < ----------1 MyApplication

DoRead()

DoCreateDocument() ©
CanOpenDocument()
AboutToOpenDocument()

public abstract class Application {
public void openDocument (String name) {
if (canOpenDocument (name)) {
Document doc = createDocument (name) ;

if (doc != null) {
docs.add (doc) ;

aboutToOpenDocument (doc) ;

doc.open () ;
doc.read () ;

N
return new MyDocument

Facade

Facade

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the
subsystems easier to use.

@ ﬁl client classes
Facade)
subsystem classes

Design Patterns, Addison-Wesley, 1994

Example Compiler

Compiler

Compile()

'—>| Scanner f——bi Token—'lﬂ—

---b‘ Parser | I Symbol |<—

= >I ProgramNodeBuilder |- - -bl ProgramNode I—-

‘ StackMachineCodeGenerator I i RISCCodeGenerator I

A

ExpressionNode
VariableNode |

Design Patterns, Addison-Wesley, 1994

Example: Library Application

Presentation] (W ’"]7
/]

Application

» LibApp is the application facade
\1 » Persistency Layer

Megium |——————1> Persist tentObject
N v
lencyL
ject
Obi

Infrastructure/ %
Database % LibraryApp

Eric Evans, Domain Driven Design, Addison-Wesley,

Domain

2004

Adapter / Wrapper: Problem

» | want to include a text view as part of my graphic shapes

» Shapes have a bounding box
» But text views only have an method GetExtent()

DrawingEditor

Shape

BoundingBox()
CreateManipulator()

_

Line

BoundingBox()

CreateManipulator()

TextView

GetExtent()

Example: Using text views in a graphics editor

DrawingEditor

Shape

BoundingBox()

CreateManipulator()

A

Line

TextShape

text

BoundingBox()

CreateManipulator()

BoundingBox() o-
CreateManipulator() ©-

Design Patterns, Addison-Wesley, 1994

TextView

GetExtent()

S ‘|Leturn text—>GetExtent() %
e ‘Lveturn new TextManipulator

Adapter / Wrapper

Adapter / Wrapper

Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Target Adaptee

Request() SpecificRequest()
% adaptee
Adapter
Request() O-f----------~- adaptee—>SpecificRequest() 1

Design Patterns, Addison-Wesley, 1994

Next week

» Design by contract
» Activity Diagrams

	Basic Principles of Good Design
	Design Patterns
	Observer Pattern
	Composite Pattern
	Visitor Pattern
	Template Method
	Facade
	Adapter / Wrapper

