Software Engineering | (02161)
Week 9

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2015

=
—
=

i

Last Week

» Software Development Process
» Version Control

Contents

Project planning
Refactoring

Refactoring Example

Project Planning

» Project plan
» Defines:

» How work is done
» Estimate

» Duration of work
» Needed resources
— Price

» Project plannin
— Price
— Time to finish
> @roject Start-up™
— Staffing, ...
»_During the projecty
» Progress (tracking)
» Adapt to changes

Hubert

Software pricing factors

» Direct costs

» Human Resources, consultants, . ..
» Hardware costs / Software license costs

» Indirect costs / overhead:

» Running costs: buildings, electricity, . ..
» 80%— 100% of other costs

» Other factors
» Competition, ...

Hubert

Process planning and executing

[project
«system» [unfinished] finished]
Project Planner @

Identify
Constraints

Do the Work

[no problems]

jp——
Define Project
Schedule

Monitor Progress
Against Plan

Define

Milestones [serious
and [minor problems and slippages] problems]
Deliverables

Initiate RISk Replan
Mitigation Actlons Project

Hubert

Hubert

Project scheduling

Identify Identify Activity Estimate_Resources Ilocate Peopl Create Project
Activities Dependencies for Activities to Activiti Act|vmes Charts

Software requxremenis Bar charts describing
and design information the project schedule

Hubert

Hubert

Traditional Processes

» Waterfall

> milestones/deliverables: system
specification, design
specification, ...

> Typical tasks: Work focused on
system components

> IterativelDeve opment (Ie.g. RHJP)
V’ LV/F‘hases N4 N

[incepen]| e ==

Business Modeling
Requirements

Analysis & Design T e

Test
Deployment

Configuration
& Change Mgmt

Project —— e

|

Blab #2|[Const || Const ::nnst”hn Tran
I vl P el 5

Iterations

» Milestones/deliverables: Each
phase: go ahead to next phase

> Typical tasks: Work focused on
system components

Hubert

Schedule Representation: Gantt Chart / Bar chart

Week 0 1 2 3 4 5 6 7 8 9 10 1
ay D ;
T2 7 i
M1/T1)
15
i P (M3/T2 & T4)
T5
T
@ (Ma/T1&T2)
T6
i
1
§ (M2/14) l l
T8
T
4 (M5/T3 &7T6)
T
¢ (M6/T7 &T8)
T10
¢ M7/T9)
T
@ (M8/T10&TI1
T2

Finish 4

Hubert

Planning Agile Projects

» fixed general structure
— quarterly cycle / weekly cycle practices in XP

as Release
lﬁ:::i;; p1| Iteration 1 p1| Iteration n Planning p1] Iteration 1 - |p1/ Tteration n
Iw—4w 1w-4w (but fixed)
Release 1 Release m

3m-6m

»(time boxin

» fixed: release dates and iterations
» adjustable: scope

» Planning: Which user story in which iteration / release

Hubert

Planning game

» Customer defines:
» user stories
» priorities
» Developer define:
» costs, risks
» suggest user stories
» Customer decides: is the user story worth its costs?

— split a user story
— change a user story

Project estimation techniques

» Algorithmic based
» e.g. COCOMO, COCOMOII, ...
» Experienced based

» XP: story points
» Comparision with similar tasks

Algorithmic cost modeling: COCOMO

» Constructive Cost Model (COCOMO) by Bary Boehm et
al., 1981

» based on empirical studies
» Start with software size estimation: LOC (lines of code)

» e.g. function point analysis based on requirements:
complexity of functions and data

» Effort: in person months: PM = a+ LOC®

» 24 <as 3.6: type of software
» 1 < b < 1.5: cost drivers: platform difficulty, team

g(f/é_?i@_ce,
» Project duration: TDEV = 3 x PM°'33+°~2*@
» Staffing: STAFF = PM/TDEV

» "Adding manpower to a late software project makes it later”
Fred Brooks, The Mythical Man-Month, 1975

Hubert

Brooks’s Law

Brooks’s Law
”...adding manpower to a late software project makes it later.”

Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975

90
(s) = els
80
70
60
- Assume effort
< effort = 90PM
© > t(staff) = effort/staff
Ed » TDEV = 15months
10 /_: N

Hubert

Brooks’s Law

Brooks’s Law
”...adding manpower to a late software project makes it later.”

Fred Brooks: The Mythical Man-Month: Essays on Software Engineering, 1975

90
. \'(5):t(s)+s'(5'1)/2':‘|155))ie"//os) -
of | Assume effort
of | effort = 90PM
| > t(staff) = effort/staff
“I i > TDEV = 15months
20 ! > t/(statf) = t(staff) +
R staff(staff —1)/2 x
(]
. Overhead based on 1% of
the development time is
2 devoted to talk to 7 other
developer (simplified model)
10
> Plus ramp-up time for the

new members

Hubert

Planning Agile Projects

» fixed general structure

— quarterly cycle / weekly cycle practices in XP

Release
Planning

Release

1| Iteration 1 p1| Iteration n Planning

o]

Iw—4w

Iteration 1

~ Pl

Iteration n

Iw—4w (but fixed)

Release 1

Release m

3m-6m

» Releases (quarterly cycle)

» lterations with releasees (weekly cycle)

» make (business) sense
» user stories /| themes

» user stories

» time boxing

» fixed: release dates and iterations
» adjustable: scope

Scrum/XP: User story estimation (1)

» Estimation

> Estimate ideal.time (e.g. person days / week) to finish a

user story
» real.time = ideal time * Joad.factor (e.g. load_factor = 2)
» Add user stories to an iteration based on real_time and

priority
» Monitoring
» New load factor: total_iteration_time / user_story_time
finished

— What can be done in the next iteration

esterdays weathe

» only take load_factor from the last iteration for planning the
next iteration
» Important: If in trouble focus on few stories and finish them
— Don't let deadlines slip (time boxing)

Hubert

Scrum/XP: User story estimation (Il)

» Estimation
» Estimate user stories relative to other user stories:
story_points
» velocity: number of story points that can be done in an
iteration (initial value is a guess or comes from previous

processes)
» In an iteration: Select up to velocity amount of user stories
» Monitoring
» new_velocity: story points of finished user stories per
iteration

— What can be done in the next iteration
» user stories with story points up to new_velocity

Lean / Kanban: User story estimation

» No "iterations”: user stories come in and flow through the
system
— Only a rough estimation of the size of the user stories
» try to level the size of the user stories
» Divide larger into smaller ones
» Measure process parameters, e.g., average cycle time
» E.g. "After committing to a user story, it takes in average a
week to have the user story finished”
» User average_cycle_time and WIP (Work In Progress) Limit
to determine the capacity of the process and thus
throughput

Contents

Project planning
Refactoring

Refactoring Example

Refactoring

v

Restructure the program without changing its functionality

Goal: improved design

Necessary step in agile processes and test-driven
development (TDD)

Requires: sufficient (automated) tests

v

v

v

Hubert

Refactoring

>

Book: Refactoring: Improving the Design of Existing Code,
Martin Fowler, 1999
Set of refactorings

» e.g. renameMethod, extractMethod, encapsulateField,
encapsulateCollection, ...

— complete list http:
//www.refactoring.com/catalog/index.html

Set of code smells

» e.g. Duplicate Code, Long Method, Large Class, Long
Parameter List, ...

— http://c2.com/cgi/wiki?CodeSmell, or
http://www.codinghorror.com/blog/2006/05/
code—-smells.html

» How to write unmaintainable code
http://thc.org/root/phun/unmaintain.html

Decompose large refactorings into several small
refactorings

» Each step: compiles and passes all tests

IDE’s have tool support for some refactorings

http://www.refactoring.com/catalog/index.html
http://www.refactoring.com/catalog/index.html
http://c2.com/cgi/wiki?CodeSmell
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://www.codinghorror.com/blog/2006/05/code-smells.html
http://thc.org/root/phun/unmaintain.html

Example refactoring: RenameMethod

» Motivation
» Sometimes a method name does not express precisely
what the method is doing
» This can hinder the understanding of the code; thus give
the method a more intention revealing name
€ Mechanics)

1) Create a method with the new name

2) Copy the old body into the new method

3) In the old body replace the body by a call to the new
method; compile and test

4) Find all the references to the old method and replace it with
the new name; compile and test

5) Remove the old method; compile and test

— Supported directly in some IDE’s

Hubert

Code smells

/f It StlnkS, Change It Refactoring, Martin Fowler, 1999

> Duplicate Code >
» Long Metho

» Large Class

» Long Parameter List

v

Divergent Change
Shotgun Surgery
Feature Envy

Data Clumps
Primitive Obsession

Switch Statements

» Parallel Inheritance

http://en.wikipedia.org/wiki/Code_smell

v

v

v

v

Lazy Class

Speculative Generalisation
Temporary Field

Message Chains
MiddleMan

Inappropriate Intimacy

Alternative Classes With
Different Interfaces

Incomplete Library
Data Class
Refused Bequest
Comments

http://en.wikipedia.org/wiki/Code_smell
Hubert

Code Smell: Data Clumps

public class Person {

private
private
private
private
Pprivate

private

String name; h . .
Calendar birthdate}' 16\14 Ce)'/\ﬂ&.p(,, Ld)
Company company;

String street; . Lw .
String city; }[/\I&L C:L\JQ\AL <o Sol

String zip;

|5 coke doppbicahs]
pub)lic class Corl::par?;{ v P?VQCU \’

private
private

private
private
private

String name;
String vat_number;
String street;
String city;

String zip;
(:;DLV'tADVi}

Hubert

Code Smell: Switch Statement

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
if (m.overdue) {

switch (m.gethEe()) {
case Medium.BOOK : fine = fine + 10; break;

case Medium.DVD: fine = fine + 30; break;
case Medium.CD; fine = fine + 20; break;
default] fine = fine + 5; break;

} } S D{Qmouu'c o in
return fine; . . .
: t _()\Uu: 'léw-k hn.ﬁe_ lﬁeO/

Hubert

Better Design

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
if (m.overdue) { fine = fine + m.getFine();}
}

return fine;

}

public class Medium {
public double getFine() { return 5; }
}

public class Book extends Medium {
public double getFine() { return 10; }
}

public class DVD extends Medium {
public double getFine() { return 30; }
}

public class CD extends Medium {
public double getFine() { return 20; }
}

Using "Template Method” Design Pattern

public class User {
public double computeFine () {
double fine = 0;
for (Medium m : borrowedMedia) {
_fine =+ m.getFine();
}

return fine;

}

abstract public class Medium {
public double getFine() {
return isOverdue(yw? getFineForOverdueMedium ()

12

}

public class Medium {
abstract public double getFineForOverdueMedium() ;
_aostracl

}

public class Book extends Medium {

public double getFing¢ForQverdueMedium() { return 10; }
} / —
public class DVD exteAds Medium {
public doubleggetFine)) {
if (isScratched()) return 100;

return super();

}
public double getFineForOverdueMedium() { return 30; }
e —

Hubert

Contents

Project planning
Refactoring

Refactoring Example

MarriageAgency class diagram

© Marriacefae @ Customer

% birtYear: int

- CUStON | S interests: Arravlist<!
« | S name: String

% phone: int

Ssex: boolean

@ addCustlnteres
@ addCustomer()
@ findCustomer()
& main()

@ matchCustomel

o Custormer()
@ addlnterest)

» Refactoring example in detalil

— http://www2.imm.dtu.dk/courses/02161/2015/
slides/refactoring_example.pdf

» Framework for running tests as soon the code changes:
— Infinitest http://infinitest.github.io/

http://www2.imm.dtu.dk/courses/02161/2015/slides/refactoring_example.pdf
http://www2.imm.dtu.dk/courses/02161/2015/slides/refactoring_example.pdf
http://infinitest.github.io/
Hubert

Remark on refactoring

» A refactoring takes a system with green tests to a system
with green tests
» Decompose a large refactoring into small refactorings
— Don’t have failing tests (or a broken system) for too long
(e.g. days, weeks, ...)
» Each small refactoring goes from a green test to a green

test
» Ideally, you can interrupt large refactorings to add some

functionality and then continue with the refactoring

Next Week

» Principles of Good Design
» Design Patterns

	Project planning
	Refactoring
	Refactoring Example

