
Software Engineering I (02161)
Week 2

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2015

Contents

Programming Tips and Tricks
Booleans
Delegation

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

Booleans

if (string.equals("adminadmin")) {
adminLoggedIn = true;

} else {
adminLoggedIn = false;

}

Don’t use conditionals to set a boolean variable
I Better

adminLoggedIn = string.equals("adminadmin");

Booleans

if (string.equals("adminadmin")) {
adminLoggedIn = true;

} else {
adminLoggedIn = false;

}

Don’t use conditionals to set a boolean variable
I Better

adminLoggedIn = string.equals("adminadmin");

Booleans

if (adminLoggedIn == false) {
throw new OperationNotAllowedException();

} else {
if (adminLoggedIn == true) books.add(book);

}

Use boolean variables directly; don’t compare boolean
variables with true or false

I Better

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

} else {
books.add(book);

}

or

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

}
books.add(book);

Booleans

if (adminLoggedIn == false) {
throw new OperationNotAllowedException();

} else {
if (adminLoggedIn == true) books.add(book);

}

Use boolean variables directly; don’t compare boolean
variables with true or false

I Better

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

} else {
books.add(book);

}

or

if (!adminLoggedIn) {
throw new OperationNotAllowedException();

}
books.add(book);

Delegate Responsibility

I Original
public List<Book> search(String string) {

List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.getSignature().contains(string) ||
book.getTitle().contains(string) ||
book.getAuthor().contains(string)) {
booksFound.add(book);

}
}
return booksFound;

}

Delegate Responsibility
I LibraryApp delegates contains functionality to class book

public List<Book> search(String string) {
List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.contains(string)) {
booksFound.add(book);

}
}
return booksFound;

}
I In class Book

public boolean contains(String string) {
return signature.contains(string) ||

title.contains(string) ||
author.contains(string)

}

Advantages:
I Separation of concerns: LibraryApp is searching, Book is

providing matching criteria
I Matching criteria can be changed without affecting the

search logic

Contents

Programming Tips and Tricks

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

Basic Activities in Software Development

I Understand and document what kind of the software the
customer wants
→ Requirements Analysis
→ Requirements Engineering

I Determine how the software is to be built
→ Design

I Build the software
→ Implementation

I Validate that the software solves the customers problem
→ Testing

Requirements Engineering

Requirements Analysis
Understand and document the kind of software the customer
wants

I Describe mainly the external behaviour of the system and
not how it is realised
→ what not how

I Techniques for discovering, understanding, and
documentation

I Glossary: Understand the problem domain
I Use Cases: Understand the functionality of the system
I User Stories: Understand the functionality of the system

Types of Requirements

I User requirements
I The requirements the user has

I System requirements
I The requirements for the software development team

I Functional Requirements
I E.g. the user should be able to plan and book a trip

I Non-functional Requirements
I All requirements that are not functional
I E.g.

I Where should the software run
I What kind of UI the user prefers

Travel Agency Example: User Requirements

The travel agency TravelGood comes to you as software
developers with the following proposal for a software project:

I Problem description / user requirements
I TravelGood wants to offer a trip-planning and booking

application to its customers. The application should allow
the customer to plan trips consisting of flights and hotels.
First the customer should be able to assemble the trip,
before he then books all the flights and hotels in on step.
The user should be able to plan several trips. Furthermore
it should be possible to cancel already booked trips.

Travel Agency

I Functional Requirements
I ”plan a trip, book a trip, save a planned trip for later

booking, . . . ”
I Non-functional requirements

I ”System should be a Web application accessible from all
operating systems and most of the Web browsers”

I ”It must be possible to deploy the Web application in a
standard Java application servers like GlassFish or Tomcat”

I ”The system should be easy to handle (it has to a pass a
usability test)”

Categories of non-functional requirements

Ian Sommerville, Software Engineering - 9

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Possible measures

Ian Sommerville, Software Engineering - 9

Contents

Programming Tips and Tricks

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

Requirements engineering process

A spiral view of the requirements engineering process

Ian Sommerville, Software Engineering - 9

Requirements Engineering Process: Techniques

I Elicitation
I Interviews
I Glossary
I Use Cases / User Stories

I Specification
I Glossary
I Use Cases / User Stories

I Validation
I Inspection

I Validity, Consistent, Complete, Realistic, . . .
I Creation of tests

Contents

Programming Tips and Tricks

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

Glossary

I Purpose: capture the customer’s knowledge of the
domain so that the system builders have the same
knowledge

glossary (plural glossaries)
”1. (lexicography) A list of terms in a particular domain of
knowledge with the definitions for those terms.” (Wikitionary)

I List of terms with explanations
I Terms can be nouns (e.g. those mentioned in a problem

description) but also verbs or adjectives e.t.c.

Example

Part of a glossary for the travel agency
User: The person who is using the travel agency
Trip: A trip is a collection of hotel and flight informations. A trip can be
booked and, if booked, cancelled.
Booking a trip: A trip is booked by making a hotel reservation for the
hotels on the trip and a flight booking for the flights of the trip
Flight booking: The flight reservation is booked with the flight agency
and is payed.
Reserving a hotel: A hotel is reserved if the hotel informed that a
guest will be arriving for a certain amount of time. It is possible that the
hotel reservation requires a credit card guarantee.
. . .

I Warning
I Capture only knowledge relevant for the application
I Don’t try to capture all possible knowledge

Contents

Programming Tips and Tricks

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

Use Case

Use cases capture functional requirements
→ Naming convention: ”Do something” (= functionality): ”verb

+ noun”

Use Case
A Use Case is a set of interaction scenarios of one or several
actors with the system serving a common goal.

Use Case Diagram
A use case diagram provides and overview over the use cases
of a system and who is using the functionality.

Detailed Use Case description
A detailed use case description describes the interaction
between the user and the system as a set of scenarios

Use Case Example: search available flights

name: search available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and

the arrival and departure dates
2. The system provides a list of available flights with prices

and booking number
alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Use Case Diagram

Administrator

Plan Trip

Book Trip

Cancel Trip

User
Manage Trip

Manage Flights

Manage Hotels

TravelAgency

«extends»

«extends»

Relations between use cases

extends: optional part as a use
case

includes: mandatory part of a
use case

User

Login

«include»

Verify user

TravelAgency

Supply username
and password Use NemID

«extends» «extends»

Use extends/include sparingly

User

Login

«include»

Verify user

TravelAgency

Supply username
and password Use NemID

«extends» «extends»

I Use extends/include only when:
I Interactions are reused by other use cases, e.g. login?
I Relationship between abstract and concrete (cf. next slide)
I A use case contains optional interactions and it makes

sense to describe these as a use case themselves
I Extends/include don’t show the order of interactions in a

use case
→ When in doubt, don’t use extends/include

Types of use case diagrams

a) Business use cases (kite level use case (from Alistair
Cockburn))

b) System use cases / sea level use case
c) Use cases included in sea level use cases are called fish

level use cases by Alistair Cockburn

UML Destilled, Martin Fowler

Business Use Cases

Administrator

Plan Trip

Book Trip

Cancel Trip

User
Manage Trip

Manage Flights

Manage Hotels

TravelAgency

«extends»

«extends»

System Use Cases Part I

Search Avaialbe Flights

Search Available Hotels

User

TravelAgency

«extends»

«extends»

Add Hotel to Trip

Add Flight to Trip

Plan Trip

List Trip

Delete Hotel from Trip

Delete Flight from Trip

«extends»

«extends»

«extends»

«extends»

«extends»

Save Trip

Book Trip

User
Cancel Trip

Delete Trip

Edit Trip

TravelAgency

System Use Cases Part II

Add Flight to DB

Delete Flight from DB

Administrator

TravelAgency

Upload Flights from File

List Flights in DB

Save Flights to File

Add Hotel to DB

Delete Hotel from DB

Administrator
Upload Hotels from File

List Hotels in DB

Save Hotels to File

TravelAgency

Detailed use cases: Template

Template to be used in this course for detailed use case
descriptions

name: The name of the use case
description: A short description of the use case
actor: One or more actors who interact with the system
precondition: Possible assumptions on the system state to enable the
use case

main scenario: A description of the main interaction between user and
system

→ Note: should only explain what the system does from the
user’s perspective

alternative scenarios:
note: Used for everything that does not fit in the above categories

→ To be used in the examination report

Detailed use case search available flights

name: search available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and

the arrival and departure dates
2. The system provides a list of available flights with prices

and booking number
alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Use case scenarios

I Use case scenarios = interaction between an actor and the
system

I Anything the user does with the system
I System responses
I Effects visible/important to the customer

I Not part of the interaction: What the system internally does

Detailed use case cancel trip

name: cancel trip
description: cancels a trip that was booked
actor: user
precondition:

I the trip must have been booked
I the first date for a hotel or flight booking must be one day in

the future
main scenario:

1. user selects trip for cancellation
2. the system shows how much it will cost to cancel the trip
3. selected trip will be cancelled after a confirmation

Detailed use case plan trip
This use case includes other use cases

name: plan trip
description: The user plans a trip consisting of hotels and
flights
actor: user
main scenario:

repeat any of the following operations in any order until
finished

1. search available flights (use case)
2. add flight to trip (use case)
3. search available hotels (use case)
4. add hotel to trip (use case)
5. list trip (use case)
6. delete hotel from trip (use case)
7. delete flight from tip (use case)

Note: the trip being planned is referred to as the current
trip

Detailed use case save trip

name: save trip
description: provides the current trip with a name and
saves it for later retrieval
actor: user
precondition: the current trip is not empty
main scenario:

1. user provides a name for the trip
alternative scenarios:

1: the name is not valid
2: notify the user of the fact and end the use case

1: a trip with the name already exists
2: ask the user if the trip should overwrite the stored trip

3a: If yes, overwrite the stored trip
3b: If no, end the use case

Use cases and system boundary
Actors and use cases depend on the system boundary:

I System Decomposition

I System Boundary: Travel Agency

I System Boundary: Front end of the
travel agency

I System Boundary: Back end end of
the travel agency

Contents

Programming Tips and Tricks

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

User stories

I Introduced with Extreme Programming
I Focus on features

I ”As a customer, I want to book and plan a single flight from
Copenhagen to Paris”.

I Recommended, but not exclusive: ”As a <role>, I want
<goal/desire> so that <benefit>”

I Difference to Use Cases:
I Contain one main scenario
I Are concrete (i.e. use concrete data)
I User stories can be defined for non-functional requirements

”The search for a flight from Copenhagen to Paris shall take
less than 5 seconds”

I Documented by user story cards, i.e. index cards

Example of a User story card

Kent Beck, Extreme Programming, 1st ed.

I User story card: A contract between the customer and the
devloper to talk about the user story

User stories and requirements engineering

I Important: Requirements engineering is done in parallel
with the development of the system

I User story cards are created by the customer and
discussed with the developer

I User story cards are assigned to iterations based on
importance to the customer

I Within each iteration the user stories are refined and tests
are implemented

I Two level approach
1) Make coarse user stories for planning

→ Epics

2) Detail user stories when they are about to be implemented

→ Compare with waterfall: Already in the requirements phase
make all the requirements as precise and detailed as
possible

Software Development processes
I Traditional (waterfall process)

I Agile processes (simplified) (user story driven)

Comparision: User Stories / Use Cases

Use Story
I one concrete

scenario/feature
I functional + non-functional

requirements

I several abstract scenarios
with one goal

I only functional
requirements

Combining Use Cases and User Stories

1. Use cases:
I Gives an overview over the possible interactions
→ use case diagram

2. Derive user stories from use case scenarios (i.e. main-
and alternative)

3. Implement the system driven by user stories
I Note that different scenarios in use cases may have

different priorities
→ Not necessary to implement all scenarios of a use case

immediately

Contents

Programming Tips and Tricks

What are software requirements?

Requirements Engineering Process

Glossary

Use Cases

User Stories

Summary

Summary

I Requirements analysis is about finding out what the
software should be able to do, not how

I Types: functional and non-functional requirements
I Qualities: testable and measurable
I Process: Discover (Elicitation), Document (Specification),

Validate (Validation)
I Glossary: Defines a common language between customer

and software developer
I Use cases

I Used for both finding and documenting the requirements
I What are the functions the user can perform with the

software?
I User stories

I Focus on user relevant scenarios
I Can be used for functional and non-functional requirements
I Can be derived from use case scenarios

Exercises

I For this week
I http://www2.imm.dtu.dk/courses/02161/2015/
slides/exercise02.pdf

I Still ongoing: programming exercises
I http://www2.imm.dtu.dk/courses/02161/2015/
index2.html

http://www2.imm.dtu.dk/courses/02161/2015/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2015/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2015/index2.html
http://www2.imm.dtu.dk/courses/02161/2015/index2.html

	Programming Tips and Tricks
	Booleans
	Delegation

	What are software requirements?
	Requirements Engineering Process
	Glossary
	Use Cases
	User Stories
	Summary

