
Software Engineering I (02161)
Week 1

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2016

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

First Programming Assignment

JUnit

Java Tips and Tricks

The course

I 5 ECTS course 02161: Software Engineering 1
I Target group: Bachelor in Software Technology and IT and

Communication in the second semester
I Learning objectives

I To have an overview over the field software engineering
and what is required in software engineering besides
programming

I To be able to take part in bigger software development
projects

I To be able to communicate with other software designers
about requirements, architecture, design

→ To be able to conduct a smaller project from an informal
and open description of the problem

Who are we?

I 119 students with different backgrounds (bachelor 115)
I Bachelor Softwaretek.: 71
I Bachelor It og Kom.: 39
I Bacheolor other: 5
I Other: 4

I Teacher
I Hubert Baumeister, Assoc. Prof. at DTU Compute

(huba@dtu.dk; office 303B.058)
I 3 Teaching assistants

I Jonas Holger Hansen
I Maja Lund
I Mathias Kirkeskov Madsen

Contents

Course Introduction

Introduction to Software Engineering
Introduction
Development Example

Practical Information

First Programming Assignment

JUnit

Java Tips and Tricks

Building software

Tools and techniques for building software, in particular large
software

What is software?

I Software is everywhere
I Stand-alone application (e.g. Word, Excel), Mobile

applications, Interactive transaction-based applications
(e.g. flight booking), Embedded control systems (e.g.,
control software the Metro, mobile phones), Batch
processing systems (e.g. salary payment systems, tax
systems), Entertainment systems (e.g. Games), System for
modelling and simulation (e.g. weather forecasts), Data
collection and analysing software (e.g. physical data
collection via sensors, but also data-mining Google
searches), System of systems (e.g. cloud, system of
interacting software systems), . . .

I Types of software
I Mass production, Customised software, Mixture of both

→ Not one tool, method, or theory
I Though there are general principles applicable to all

domains

Software attributes

I Maintainability
I Can be evolved through several releases and changes in

requirements and usage
I Dependability and security

I Includes: reliability (robustness), security, and safety
I Efficiency

I Don’t waste system resources such as memory or
processor cycles

I Responsiveness, processing time, memory utilisation
I Acceptability

I To the user of the system
I understandable, usable, and compatible with the other

systems the user uses

What belongs to software?

I Computer program(s), but also
I Validation (e.g. tests)
I Documentation (User–, System–)
I Configuration files
I . . .

Software Engineering

Software Engineering Definition (Sommerville 2010)
Software engineering is an engineering discipline that is
concerned with all aspects of software production from the
early stages of system specification through to maintaining the
system after it has gone into use.

I An engineer
I applies appropriate theories, methods, and tools

I All aspects of software production:
I Not only writing the software but also
I Software project management and creation of tools,

methods and theories

Basic Activities in Software Development

I Understand and document what kind of the software the
customer wants

I Determine how the software is to be built
I Build the software
I Document and being able to talk about the software
I Validate that the software solves the customers problem
→ Each activity has a set of techniques and methods

Two approaches to software development
Waterfall

Agile

Example Vending Machine

Design and implement a control
software for a vending machine

Vending Machine: Requirements documentation

I Understand and document what kind of the software the
customer wants
→ Glossary
→ Use case diagram
→ Detailed use case

Glossary
I Vending machine: The vending machine allows users to

buy fruit.
I User: The user of the vending machine buys fruit by

inserting coins into the machine.
I Owner: The owner owns the vending machine. He is

required to refill the machine and can remove the money
from the machine.

I Display: The display shows how much money the user has
inserted.

I Buy fruit: Buy fruit is the process, by which the user inputs
coins into the vending machine and selects a fruit by
pressing a button. If enough coins have been provided the
selected fruit is dispensed.

I Cancel: The user can cancel the process by pressing the
button cancel. In this case the coins he has inserted will be
returned.
. . .

Use case diagram

VendingMachine

User

Owner

Buy Fruit

Cancel

Refill Machine

Takeout Money

Detailed Use Case: Buy Fruit

name: Buy fruit
description: Entering coins and buying a fruit
actor: user
main scenario:

1. Input coins until the price for the fruit to be selected is
reached

2. Select a fruit
3. Vending machine dispenses fruit

alternative scenarios:
a1. User inputs more coins than necessary
a2. select a fruit
a3. Vending machine dispenses fruit
a4. Vending machine returns excessive coins

. . .

Vending Machine: Specify success criteria

I Prepare for the validation
→ Create tests together with the customer that show when

system fulfils the customers requirements
→ Acceptance tests
I Test driven development

→ create tests before the implementation
I Otherwise: after the implementation

Functional Test for Buy Fruit Use Case: JUnit Tests

@Test
public void testBuyFruitExactMoney() {

VendingMachine m = new VendingMachine(10, 10);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.selectFruit(Fruit.APPLE);
assertEquals(Fruit.APPLE, m.getDispensedItem());

}

@Test
public void testBuyFruitOverpaid() {

VendingMachine m = new VendingMachine(10, 10);
m.input(5);
assertEquals(5, m.getCurrentMoney());
m.selectFruit(Fruit.APPLE);
assertEquals(Fruit.APPLE, m.getDispensedItem());
assertEquals(2, m.getRest());

}

// more tests
// at least one for each main/alternative scenario

Vending Machine: Design and implementation

I Determine how the software is to be built
→ Class diagrams to show the structure of the system
→ State machines and sequence diagrams to show how the

system behaves
I Build the software

→ Implement the state machine using the state design pattern

High-level Class diagram

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()

*

Application logic as state machine

Design of the system as class diagram

Uses the state design pattern

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()
~setIdleState()
~dispense(f: Fruit)
~setCurrentStateForFruit(f: Fruit)
~hasFruit(f: Fruit)

1

«interface»
VendingMachineState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

IdleState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

FruitSelectionState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

1

*

m.setCurrentMoney(m.getCurrentMoney() + i);

if (!m.hasFruit(fruit)) {
 m.setIdleState();
 return;
}
if (m.hasEnoughMoneyFor(fruit)) {
 m.setIdleState();
 m.dispense(fruit);
} e l se {
 m.setCurrentStateForFruit(fruit);
}

m.dispense(null);

super.input(m, i);
if (m.hasEnoughMoneyFor(selectedFruit)) {
 m.setIdleState();
 m.dispense(selectedFruit);
}

m.setIdleState();
super.cancel(m);

Vending Machine: Visualization of the Execution

I Designing the system
I Documentation the system
→ Use Interaction Diagrams, aka. Sequence Diagrams

Interaction Diagram: Swing GUI

 sd:buy apple

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

First Programming Assignment

JUnit

Java Tips and Tricks

Course content

1. Requirements Engineering
2. Software Testing (JUnit, Test Driven Development,

Systematic Tests, Code Coverage)
3. System Modelling (mainly based on UML)
4. Architecture (e.g layered architecture)
5. Design (among others Design Patterns and Design by

Contract)
6. Software Development Process (focus on agile processes)
7. Project Management (project planning)

Course activities

I Lectures every Monday 13:00 — approx 15:00 (Lecture
plan is on the course Web page)

I Exercises (databar 003, 015, 019 in building 341)
I Teaching assistants will be present : 15:00 — 17:00
I Expected work at home: 5 hours (lecture preparation;

exercises, . . .)
I Programming assginments and non-programming

assignments
I not mandatory
I But hand-in recommended to get feedback
I Preparation for the examination project

Examination

I Exam project in groups (2—4)
I Software, Report, Demonstration
→ Focus on that you have learned the techniques and

methods
I no written examination

I Week 05: Project introduction and forming of project
groups; participation mandatory

I Week 07: Submission of use cases and design
I Week 08: Peer review of use cases and design; start of

implementation phase
I Week 13: Demonstration of the projects (each project 15

min)

Course material

I Course Web page:
http://www.imm.dtu.dk/courses/02161 contains

I practical information: (e.g. lecture plan)
I Course material (e.g. slides, exercises, notes)
I Check the course Web page regularly

I CampusNet: Is being used to send messages;
I make sure that you receive all messages from CampusNet

I Books:
I Textbook: Software Engineering 9 from Ian Sommerville

and UML Destilled by Martin Fowler
I Suplementary literature on the course Web page

http://www.imm.dtu.dk/courses/02161

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

First Programming Assignment

JUnit

Java Tips and Tricks

Programming Assignments

I Implementation of a library software
I Guided development based on agile software development

principles
I User-story driven: The development is done based on user

stories that are implemented one by one
I Test-driven: Each user-story is implemented by first writing

the test for it and then writing the code
I All programming assignments are available directly

Layered Architecture

Eric Evans, Domain Driven Design, Addison-Wesley,

2004

1. Development of the application +
domain layer (assignments 1 – 4)

2. Presentation layer: Command
line GUI (assignment 5)

3. Simple persistency layer
(assignment 6)

First week’s exercise

I Using Test-Driven Development to develop the application
+ domain layer

I Basic idea: First define the tests that the software has to
pass, then develop the software to pass the tests

I Writing tests before the code is a design activity, as it
requires to define the interface of the code and how to use
the code, before the code is written

I Test are automatic using the JUnit framework
I First Week’s exercise: Tests are given, you implement just

enough code to make the tests pass
→ Video on the home page of the course
I This is done by uncommenting each test one after the

other
I First implement the code to make one test run, only then

uncomment the next test and make that test run

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

First Programming Assignment

JUnit

Java Tips and Tricks

JUnit

I JUnit is designed by Kent Beck in Erich Gamma to allow
one to write automated tests and execute them
conveniently

I JUnit can be used standalone, but is usually integrated in
the IDE (in our case Eclipse)

I We are going to use JUnit version 4.x which indicates tests
to be run automatically using the @org.junit.Test
annotation (or just @Test if org.junit.Test is imported)

Example of a JUnit Test

The following tests one scenario of the login functionality:
1. First check that the adminstrator is not logged in
2. login the adminstrator
3. Check that the login operation returns the correct return

value (in this case true)
4. Check with the system, that the user is logged in

@Test
public void testLogin() {
LibraryApp libApp = new LibraryApp();
assertFalse(libApp.adminLoggedIn());
boolean login = libApp.adminLogin("adminadmin");
assertTrue(login);
assertTrue(libApp.adminLoggedIn());

}

→ The Web site of the course has a link to a video showing
you how you should work on the programming
assignments

Contents

Course Introduction

Introduction to Software Engineering

Practical Information

First Programming Assignment

JUnit

Java Tips and Tricks
User-defined Exceptions
Collections

User-defined Exceptions

I Purpose: To notify the caller about some exceptional or
error state of the method
public void addBook(Book book)

throws OperationNotAllowedException {
if (!adminLoggedIn())
throw new OperationNotAllowedException(...);

...
}

I Creating a user defined exception
public class OperationNotAllowedException extends Exception {
public OperationNotAllowedException(String errorMsg) {

super(errorMsg);
}

}

I Throwing a user-defined exception
throw new OperationNotAllowedException("some error message");

Checked vs. unchecked Exceptions

I Checked Exception
public class MyCheckedException extends Exception {...}

→ Methods which throw MyCheckedException must have
throws MyCheckedException in the signature, e.g.
public void m() throws MyCheckedException {...}

I Unchecked Exception
public class MyUncheckedException extends Error {...}

→ Methods don’t need the throw clause

User-defined Exceptions: Example

I Catching an user-defined exception
try {

libApp.addBook(book1);
} catch (OperationNotAllowedException e) {
// Error handling code
}

Compiler error: Unreachable catch block

I Test code
try {
libApp.addBook(book1);
fail();

} catch (OperationNotAllowedException e) { .. }

I Code added by Eclipse
public void addBook(Book book) { }

I Compiler error: ”Unreachable catch block for
OperationNotAllowedException. This exception is never
thrown from the try statement body”

I Solution
public void addBook(Book book)

throws OperationNotAllowedException { }

I Problem only occurs with checked exceptions

Compiler error: Unreachable catch block

I Test code
try {
libApp.addBook(book1);
fail();

} catch (OperationNotAllowedException e) { .. }

I Code added by Eclipse
public void addBook(Book book) { }

I Compiler error: ”Unreachable catch block for
OperationNotAllowedException. This exception is never
thrown from the try statement body”

I Solution
public void addBook(Book book)

throws OperationNotAllowedException { }

I Problem only occurs with checked exceptions

Testing and exceptions

I Test for the presence of an exception
@Test
public void testSomething() {
...
try {
// Some code that is expected to
// throw OperationNotAllowedException
assertFalse(libApp.adminLoggedIn());
libApp.addBook(b);
fail("Expected OperationNotAllowedException to be thrown");

} catch (OperationNotAllowedException e) {
// Check, e.g., that the error message is correctly set
assertEquals(expected, e.getMessage());

}
}

I Alternative test
@Test(expected=OperationNotAllowedException.class)
public void testSomething() {...}

I No try-catch if you don’t test for an exception: JUnit knows
best how to handle not expected exceptions

Lists (Collections)

I Interface: java.util.List<T>
→ http://docs.oracle.com/javase/1.4.2/docs/

api/java/util/List.html

I Classes implementing the List interface:
I java.util.ArrayList<T>, java.util.Vector<T> (among others)

→ Use java.util.List<T> in all methods and as the type of the
instance variable

→ Information hiding
I decoupling implementation from usage

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/List.html

Creating a List

I Instance variable containing a list
List<Book> books = new ArrayList<Book>();

I Alternative (not so good)
ArrayList<Book> books = new ArrayList<Book>();

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}

I Variant b)
for (Iterator it = books.iterator(); it.hasNext();) {

Book book = it.next();
// do something with book

}
I Variant c) recommended way

for (Book book : books) {
// do something with book

}

I Variant d) using Streams in Java 8
books.stream().forEach(b -> { /* do something */ });

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}
I Variant b)

for (Iterator it = books.iterator(); it.hasNext();) {
Book book = it.next();
// do something with book

}

I Variant c) recommended way
for (Book book : books) {

// do something with book
}

I Variant d) using Streams in Java 8
books.stream().forEach(b -> { /* do something */ });

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}
I Variant b)

for (Iterator it = books.iterator(); it.hasNext();) {
Book book = it.next();
// do something with book

}
I Variant c) recommended way

for (Book book : books) {
// do something with book

}

I Variant d) using Streams in Java 8
books.stream().forEach(b -> { /* do something */ });

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}
I Variant b)

for (Iterator it = books.iterator(); it.hasNext();) {
Book book = it.next();
// do something with book

}
I Variant c) recommended way

for (Book book : books) {
// do something with book

}

I Variant d) using Streams in Java 8
books.stream().forEach(b -> { /* do something */ });

Pre Java 8 vs Java 8

Finding an element:
I Using foreach in Java 7

public Book findBook(String name) {
for (Book book : books) {

if (book.getName().equals(name)) {
return book;

}
}

}
I Using streams in Java 8

public Book findBook(String name) {
Optional r = books

.stream()

.filter(b -> b.getName().equals(name))

.findFirst();
return r.isPresent() ? r.get() : null;

}

	Course Introduction
	Introduction to Software Engineering
	Introduction
	Development Example

	Practical Information
	First Programming Assignment
	JUnit
	Java Tips and Tricks
	User-defined Exceptions
	Collections

