
Software Engineering I (02161)
Additional Informaton for Programming Assignment 5

Assoc. Prof. Hubert Baumeister

Spring 2015

Contents
1 Adding a Command Line Interface to the Library Application 1

1 Adding a Command Line Interface to the Library Application
Library Application

• The goal of programming assignment 5 is to add a user interface to the library application. The user interface
will be a command line interface consisting of several screens/menus, each presenting the user with a choice
of actions to choose from. For example the first screen will be

0) Exit
1) Login as administrator

• The user can choose between 0 or 1. Depending on his choice, a different menu will be shown. For example,
when the user presses 1, he will see

enter password

• where the user answers with the password, i.e., adminadmin, which will lead to the following menu

0) Logoff
1) Add new media
2) Register new user
...

• State machines are very good to describe screen based (i.e. modal) user interfaces. Depending on its input,
the user is guided from one screen to another. Each screen representing a state in the state machine, and
each user interaction a trigger for a transition.

Login Screen
login

[pw correct]/print "Logged in"

[pw incorrect]/print "Login failed"

User Screen

 logoff/print "Logged off"

Admin Screen

exit

Offers the menu for
- managing users
- managing media
- logof f

Offers the menu for
- login as admin
- borrowing and returning media
- searching for media
- exiting the application

[wrong selection]/print "Wrong selection"

1

• This state machine corresponds to the the following two screens (user inputs are writtin in italics)

User Screen

0) Exit

1) Login as administrator

1

Login Screen

enter password

adminadmin

Logged in.

Admin Screen

0) Logoff

0
Logged off.

Using substates to build more complex user interfaces

• In state machine, states can contain again state machines. States which can include other states are called
substates. Substates help structure complex state diagrams (similar to subroutines)

• In the following diagram, the substate ”User dialog” is used to represent the interaction of the user with the
user screen.

Login Screen
login

[pw correct]/print "Logged in"

[pw incorrect]/print "Login failed"

User Screen

 logoff/print "Logged off"
Admin Dialog

exit

[wrong selection]/print "Wrong selection"

User dialog

• We can make the state machine of the substate visible, or we can hide it.

2

[pw correct]/print "Logged in" logoff/print "Logged off"

Admin Dialog

exit
User dialog

• We can also look into more detail of the Admin Dialog substate. As one can see, this can contain a substate
”Add Media Dialog”, describing the user interface for adding a media to the library.

Library App user interface exercise
Program assignment 5 has two tasks:

1) Given tests for the functionality login, implement the tests using the state pattern

2) Design, test, and implement the remaining functionality of the library application

– Design should happen by drawing state machines.
∗ You should be drawing a high level state machine, showing the different types of dialogs the

application has. In this diagram, you probabably don’t want to show the state machines of most
substates.

∗ For each dialog provide a substate with its state machine containing the design of that dialog

3

Library App UI: State Pattern
I have already provided you with a skeleton for the implementation of the command line interface based on

the state pattern from the lecture.

{abstract}
Screen

printMenu
processInput
...?

LibraryApp

LibraryUI

printMenu
processInput
readInput
setScreen
basicLoop
main
...

AdminScreen

printMenu
processInput
...?

10..1

UserScreen

printMenu
processInput
...?

 1

 *
LoginScreen

printMenu
processInput
...?

{screen.processInput();}

{screen.printMenu();}

Library App: main application

• The main application creates a LibraryUI object and calls the basicLoop method of that object with a
BufferedReader as stream for all inputs and a PrintWriter for all outputs. The main method connects the
BufferedReader to System.in (the user’s input) and the PrintWriter to System.out (the console).

• The reason, why we not directly use System.in and System.out in method basicLoop, is so that we can
create automatic tests. Now we can test the methods in the basicLoop with stream contents, the test method
provide, and we don’t require a human to input data and interpret the data written to the console.

public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out, true);
LibraryUI ui = new LibraryUI();
ui.basicLoop(in, out);

}

• The basicLoop method encodes the basic interaction of a command line UI: the system prints some infor-
mation on the screen, like a menu, or a specific question, like the request to enter a password, it then reads
the information from the user, and finally prints an answer on the console.

• The basicLoop proceeds until processInput decides that one of the inputs the user did, e.g. 0) on a menu
item that reads 0) Exit Application, leads to the termination (i.e., processInput returns true).

public void basicLoop(BufferedReader in, PrintWriter out)
throws IOException {

String selection;
do {

printMenu(out);
selection = readInput(in);

} while (!processInput(selection, out));
}

public void printMenu(PrintWriter out) throws IOException {
screen.printMenu(out);

}

public boolean processInput(String input, PrintWriter out) throws IOException {
return screen.processInput(input,out);

}

4

Library App UI: tests

• In general, user interface code is difficult to test

→ use a layered architecture with a thin presentation layer

• However, sometimes the UI can be made testable

→ Here: the basic methods work on BufferedReader and PrintWriter instead of InputStream and PrintStream

→ Now the methods can be tested by using arbitrary streams instead of just System.in and System.out

Library App UI: tests

• The following tests tests, that already in the first menu after starting the application, there will be a menu
point 0) Exit. If the user then enters 0, then the application will write Exited on the screen and
terminate the basicLoop, i.e, true.

@Test
public void testTestExitApplication1() throws IOException {

LibraryUI libraryUI = new LibraryUI();
testScreenInteraction(libraryUI, "0) Exit", "0", "Exited.",true);

}

• testScreenInteraction is a helper function, which contains the actual assert statements. The first argument
is the library UI to be tested. The second argument is a string that should be contained when the menu is
printed. The third argument is the input of the user, and the fourth argument the response of the system to
that input. The last argument is a boolean saying whether processInput returns true (then the application
should be terminated) or false (i.e. the application should continue).

public void testScreenInteraction(LibraryUI libraryUI,
String expectedMenu,
String input, String expectedOutput, boolean expectedExitStatus)
throws IOException {

StringWriter out = new StringWriter();
libraryUI.printMenu(new PrintWriter(out));
assertTrue(out.toString().contains(expectedMenu));

BufferedReader reader = new BufferedReader(new StringReader(input));
String line = libraryUI.readInput(reader);
assertEquals(input,line);

out = new StringWriter();
boolean exit = libraryUI.processInput(line, new PrintWriter(out));
assertEquals(expectedOutput+"\n",out.toString());
assertEquals(expectedExitStatus,exit);

}

Example LibraryUI implementation

• The following is an example to implement the exit functionality of the UserScreen using the state pattern
and as described in the class diagram.

• The function printMenu delegates printing the screen to the printScreen method of the current screen.

• Similarily, the processInput method will delegate the processing of the input to the processInput method of
the current screen

– Note the line out.println(). The use of println ensures that the internal buffers are flushed, and
that, if you are running your application on the console (i.e. outside of the test framework), that you
see the output being printed to the console. Alternatively, you can use out.flush() to flush the
internal buffers without creating a new line.

– You could have the out.prinln() or out.flush() in each of the processInput methods of the
screen itself, but this is a form of code duplication, you should try to prevent. For example, what
happens if you forget to put the code in one of the processInput methods? Here it is in a central place
and always executed after the screen’s processInput method is called.

5

public class LibraryUI {
private Screen screen;
private LibraryApp libraryApp = new LibraryApp();

public LibraryUI() {
setScreen(new UserScreen());

}

public void printMenu(PrintWriter out) throws IOException {
getScreen().printMenu(out);

}

public boolean processInput(String input, PrintWriter out) throws IOException {
boolean exit = getScreen().processInput(input, out);
out.println();
return exit;

}

public static void main(String[] args) throws IOException {...}

public void basicLoop(BufferedReader in, PrintWriter out) ...

void setScreen(Screen screen) {
this.screen = screen;
this.screen.setLibraryUI(this);

}
...

}

Example Screen implementation

• The following code implements not the complete UserScreen, but only the first test, the possibility to exit
the application from the user screen.

public class UserScreen extends Screen {
@Override
public void printScreen(PrintWriter out) throws IOException {

out.println("0) Exit");
}

@Override
public boolean processInput(String selection, PrintWriter out) {

if ("0".equals(selection)) {
out.print("Exited.");
return true;

}
return false;

}
}

• Note that as part of the input processing, screen can change, e.g., there should be a transition from the
UserScreen to the LoginScreen when the user logs in as the administrator. In this case you would use the
code in processInput. This also explain, why each Screen object knows about its LibraryUI object.

libraryUI.setScreen(new LoginScreen());

6

	Adding a Command Line Interface to the Library Application

