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What does this function do?

public List<Integer> gégé;(List<Integer> list) |
if (list.size() <= 1) return list;

int k = list.elementAt (0);

List<Integer> 11 = new ArrayList<Integer>();
List<Integer> 12 = new ArrayList<Integer>();
List<Integer> 13 = new ArrayList<Integer>();

partition(k,list,11,13,12);
i qﬁav-
List<Integer> r ='£(11);

r.addAll (13);
r.addAll (Z(12));

govrt
return r;

}

public void partition(int k, List<Integer> list,
List<Integer> 11, List<Integer> 12, List<Integer> 13)

for (int i : list) {
if (i < k) 1l.add(i);
if (i == k) 13.add(i);

if (i > k) 12.add(i);



What does this function do?

public void testEmpy () {
int[] a = {};
List<Integer> r = gsort (Array.aslList(a));
assertTrue (r.isEmpty());

}

public void testOneElement () {
int[] a = { 3 };
List<Integer> r = gsort (Array.asList(a));
assertEquals (Array.asList (3),r);

}

public void testTwoElements () {
int[] a = {2, 1};
List<Integer> r = gsort (Array.asList(a));

assertEquals (Array.asList (1,2),r);

}

public void testThreeElements () {
int[] a = {2, 3, 1};
List<IntegeT> r = gsort (Array.asList (a));
assertEquals (Array.asList (1,2,3),1r);

}



What does this function do?

List<Integer> sort (List<Integer> a)

Coulract @] fumd. corf
Precondition: ais not_null

Postconoﬁ{ctné vI_:_Pr all result, a € List<Integer>:
result ==A(a)
if and only if
,isSorted(result) and §ameEIements(a,resuIt)\
where

isSorted(a) if and only if
forall 0 <i,j < a.size():

i < jimplies a.get(i) < a.get(j
<jimp get(i) < a.get())

—

and
sameElements(a,b) if and only if
for all i € Integer: count(a, i) = count(b, i)




Design by contract

Contract between Caller and the Method

» Caller ensures precondition
L —
» Method ensures postcondition

» Contracts spefn‘nstead of how



Example Counter

IhVawe o
Counter {context Cou;ér
{context Counter :: dec () L int - o= inv: i>=0}
pre.i2 0 )
post: i = i@pre -1 } 77 7 [lincQ : void
decQ: void . . .0 -
TS s:L.Fwd

post: i = i@pre + 1}

{context Counter :: inc () Ij

public T n(Tl1 al, .., Tn an, Counter c) (‘P\C +"‘<)

wu. 10 nl\r.r‘oA
// Here the precondition of ¢ has to hold
// to fulfifpthewmw—

c.dec();

~77B=fore returning from dec, c has to ensure the
// postcondition of dec




Bank example with constraints

{context Bank
Bank _ _ _ _ligw accounts->forAli(a | a.owner = self)

1

owner

accoun
0.*

Account

bal : int - ‘|M| >= 0} 5

update(n : int) : void

{pre: bal + n >=0
i gost: bal = bal@pre +n  and

history.oclisNew and

history.bal = bal@pre and

1 history.prev = histon

History 0.1

bal : int prev

History() : void




Update operation of Account

{pre: bal + n >=0
post: bal = bal@pre + n and

history.ocllsNew() and
history.bal = bal@pre and
history.prev = history@pre

State before executing
update (n)

{n+b>=0} %—7
T\—CCD\A‘A

a: Account

|
|
|
|
bal=b —— =~ -

prev

h: History
bal=m




Update operation of Account

{pre:. bal+n>=0 OC L
hi;lor rev = history@pre (ﬁ}ﬂc{- (o“)s{—ro" h +
prev = ua
State before executing e
update (n) State after executing
update (n)
fn+b>=0} Il|— T a: Account

bal=b+n

I
| Rl Al
I
a: Account / ﬁav
bal:.b— ’:i;;‘ T hl: History |
bal=b
Prev ———

prev

h: History

bal=m (\ h: History

- bal=m




Example

LibraryApp: jaddMgdinum (Medium m)
pre: adminlLoggedIn

pre ’
post: mediuméese = medium->including(m) and

medium.library = this)

-

LibraryApp::search(String string) : List<Medium>
post: result = medium->select (m |

m.title.contains (string) or

m.autor.contains (string) or

m.signature.contains (string))
medium = medium@pre

User: :borrowMedium (Medium m)

pre: borrowedMedium->size < 10
and m != null
and not (borrowedMedium—->exists (m’

post: m.borrowDate = libApp.getDate() and

| m’.isOverdue))




Postcondition

Assume that result denotes the result of the function
f(x : double). g
(1) post: risult2 =X f;n—:h:g s =X =
2) post: result =x? X
3) post: X2 = result X
4) post: x = result? "
Which statements are correct: (multiple answers are possible)
a) 2 + 3 is the postcondition for the function computing the
square of a number
b) Only 2 is the postcondition for the function computing the
square of a number
c) 3 is the postcondition of the square root function
e) 1 is the postcondition of the square root function



Precondition

» Given the contract for a method minmax(int[|array) in a
class which has instance variables min and max of type
int:

pre: array # null and array.length > 0
post: Vi € array : min < i < max

» Which of the following statements is true: if the client calls
minmax such the precondition is not satisfied

a) A NullPointerException is thrown

b) An IndexOutOfBoundsException is thrown.p

¢) Nothing happens

d) What happens depends on the implementation of minmax \/




Implementing DbC with assertions

» Many languages have an assert construct: assert bexp;
» Contract for Counter::dec(i:int)

Pre:i>0

Post: i = i@pre — 1



Implementing DbC with assertions

» Many languages have an assert construct: assert bexp;
» Contract for Counter::dec(i:int)

Pre:i>0

Post: i = i@pre — 1

void dec () {
assert 1 > 0; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i-=;
assert i == prei-1; // Postcondition



Implementing DbC with assertions

» Many languages have an assert construct: assert bexp;
» Contract for Counter::dec(i:int)

Pre:i>0

Post: i = i@pre — 1

void dec () {
assert 1 > 0; // Precondition
int prei = i; // Remember the value of the counter
// to be used in the postcondition
i-—;
assert i == prei-1; // Postcondition

» assert £ assertTrue



Important

» Assertion checking is switched off by default in Java
1) java -ea Main

2) In Eclipse

Java - Counter/src/dty

Ju 1 TestCounter

Junit = |
g H

L o Configu
B Failures: ammamm—

806

Run Configurations

Create, manage, and run configurations

Create a configuration that will launch a JUnit test.

CExX|[B3-

Name: |TestCounter |

type filter text

] Java Applet
[TJava |

—

= ;. Classpath | =), JRE | &/ Source| ™2

Program arguments:

¥ JuJunit
Ju TestCounter
m2 Maven Build
JujTask Context Tes

Filter matched 6 of 44 |

Variabls

VM arguments:

Apply Revert

@




Implementing DbC in Java

Pre: args # null and args.length > 0
Post: Vn € args : min < n < max

public class MinMax {
int min, max;

public void minmax (int[] args) throws Error ({
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; 1 < args.length; i++) {
int obs = argsl[i];
if (obs > max)
max = obs;
else if (min < obs)
min = obs;
}
assert isBetweenMinMax (args);

}

private boolean isBetweenMinMax (int[] array) {
boolean result = true;
for (int n : array) {
result result && (min <= n && n <= max);
}

return result;



Assertions

» Advantage

» Postcondition is checked for each computation
» Precondition is checked for each computation

» Disadvantage

» Checking that a postcondition is satisfied can take as as
much time as computing the result
— Performace problems
» Solution:

» Assertion checking is switched on during debugging and
testing and switched off in production systems
» Only make assertions for precondition
— Preconditions are usually faster to check
— Contract violations by the client are more difficult to find than
postcondition violations (c.f. assertions vs tests)



Assertion vs. Tests

» Assertion
» Check all computations (as long as assertion checking is
switched on)
» Check also for contract violations from the client (i.e.
precondition violations)

» Tests

» Only check test cases (conrete values)
» Cannot check what happens if the contract is violated by
the client



Counter

{context Counter :: dec ()
pre:i>0
post:i=i@pre-1 }

» Methods

Counter

irint

_inv: i>=0}

~ [inc( : void

dec() : void

» assume that invariant holds

» ensure invariants

» When does an invariant hold?

» After construction

» After each public method

{context Counter

{context Counter :: inc ()
post: i = i@pre + 1}

]




Invariants

» Contstructor has to ensure invariant

public Counter () {
i=0;
assert 1 >= 0; // Invariant

}

» Operations ensure and assume invariant

void dec() {
assert 1 >=
assert 1 > 0
int prei = i

// Precondition
// Remember the value of the counter
// to be used in the postcondition

0; // Invariant
;
7

i-—;
assert i == prei-1; // Postcondition
assert i >= 0; // Invariant



Contracts and inheritance

{context C::m
pre: pre’C_m
post: post*C_m}

{contextD :: m
pre: pre*"D_m
post: post*"D_m}

o —>




Contracts and Inheritance

@/ Wing Substitution principle:

At every place, where one can use objects of the superclass C,

one can use objects of the subclass D

public T n(C c)

// has to ensure Pre”C_m
c.m();
// n can rely Post”C_m

» Compare t.n(newC()) with
t.n(newD()).

— PreS — Preb w ondition

— Post® — (Pre = PostS)

stronger postcondition
/




Counter vs. Counter1

Counter and Counter1 are identical with the exception of
operation dec:
» Counter::dec
pre:i >0
post: i = i@pre — 1
» Counteri::dec

pre: true
post: (iQpre > 0) — i= /@9@ —1and
(iQpre <0) = i=

Which statement is true?
a) Counter is a subclass of Counter
b) Counter1 is a subclass of Counter

c) There is no subclass relationship between Counter and
Counter1



Defensive Programming

» Can one trust the client to ensure the precondition?



Defensive Programming

» Can one trust the client to ensure the precondition?
» Defensive Programming: don’t trust the client
void dec() { if (14 > 0) { i--; } }
——



Defensive Programming

» Can one trust the client to ensure the precondition?

» Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i-—; } }

» New Contract: No requirement for the client

» Method has to ensure it works with any argument
D

post: (i@pre > 0) — (i =iQpre — 1) and
(Iopre <0) = (i=0)
e ——

(__7 I—OQ_QQ\\AC@ O&
WU Qhow .



Defensive Programming

v

Can one trust the client to ensure the precondition?
Defensive Programming: don'’t trust the client
void dec() { if (i > 0) { i-—; } }

New Contract: No requirement for the client

» Method has to ensure it works with any argument
pre: true
post: (i@pre > 0) = (i =i@pre —1) and
(iepre < 0) = (i=0)
Or, using dider speEatos
pre: true
post(ii@pre > gh = (i=i0pre—1)

v

v

v




Defensive Programming
\J 30«» CGA"[ conhol the C("*"h\'
Pkcmd. IJUou Cen

Framework

- PublicClass PackagePrivateClass
Client
+n

| m
// s

Aefemnsi ve .
4 ) ~d how u(quh({vf Pre). vxsr.")lg



Defensive Programming

PresentationLayerl

PresentationLayer2

GUIClass

GUIClass

ApplicationLayer

ApplicationClass

+n

AP




Defensive Programming

Given method contracts 1)

LibraryApp: :addMedium (Medium m)

pre: adminLoggedIn

post: medium@pre = medium->including(m) and
medium.library = this)

LibraryApp: :addMedium (Medium m)
post: adminLoggedIn implies
medium@pre = medium->including (m) and

medium.library = this)
Ve © e
Which statement is correct?

a) 1) uses defensive programming

@es defensive program
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Activity Diagram: Business Processes

!

Confirm
Detention [Not Available]

Decision
Find Secure
Place

[Dangerous]

Transfer to

Police Station

[Available]

Inform
Social Care
Inform Next
of Kin
Update
Register
esystems «systemn «system»
MHC-PMS Admissions MHC-PMS
System

Transfer to
Secure
Hospital

Inform
Patient of
Rights

Record
Detention
Decision

Admit to
Hospital

[Not
Dangerous]

» Describe the context of the system
» Helps finding the requirements of a system

» modelling business processes leads to suggestions for
possible systems and ways how to interact with them

» Software systems need to fit in into existing business
processes

lan Sommerville, Software Engineering — 9, 2010



Activity Diagram Example Workflow

Customer Telesales Accounting Warehouse

Request return
| (Get return number

Cowm
Item
[returned]

Receive item

Restock item

/

Credit account

Item
[available]




Activity Diagram Example Operation

else

[slope = line.slope] fe——
return Point(0,0) ;%(@

@ = (line.delta - delta) / (slope - Iina.slupa})

G := {slope *

®) + dalla)

/

return Paint(x.y)



UML Activity Diagrams

Focus is on control flow and data flow

v

v

Good for showing parallel/concurrent control flow
Purpose

» Model business processes
» Model workflows
» Model single operations

Literature: UML Distilled by Martin Fowler

v

v



Activity Diagram Concepts

S
» Actions 2=

» Are atomic
» E.g Sending a message, doing some computation, raising
an exception, ...
» UML has approx. 45 Action types

» Concurrency

¥

» Fork: Creates concurrent flows | |
» Can be true concurrency
» Can be interleaving
\
» Join: Synchronisation of concurrent activities
» Wait for all concurrent activities to finish (based on token
semantics)
W

[pricrity order]
» Decisions < |

» Notation: Diamond with conditions on outgoing transitions
» else denotes the transition to take if no other condition is
satisfied




Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final



Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final



Activity Diagrams Execution

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final




Activity Diagrams Execution

initial nede

Receive
Order

activity final



Activity Diagrams Execution
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Overnight Regular
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4
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Activity Diagrams Execution
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Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final



Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final



Swimlanes / Partitions

» Swimlanes show who is performing an activity

Fulfillment Customer Service Finance

Receive
Order

Send
Invoice

Receive ‘
Payment

Deliver
Order

Close
Order




Objectflow example

Customer

Request product

P Process order

Warehouse

abject flow

: Order
lin progress]

Pull materials
Ship order

illed].

\
abject

Receive order

Bill customer

bject flow.




Data flow and Control flow

» Data flow and control flow are shown:

Receive

Invoice /)

Order

Make

\ Payment

» Control flow can be omitted if implied by the data flow:

Receive
Invoice

Order

Make
Payment



Use of Activity Diagrams

» Emphasise on concurrent/parallel execution
» Requirements phase
» To model business processes / workflows to be automated
» Design phase
» Show the semantics of one operation
» Close to a graphic programming language



Activity Diagram vs State Machines

Confirm
Detention
Decision

Transfer to
Secure
Hospital

[Dangerous]
Update
Register

«systemy «system»

Admissions MHC-PMS

System

safe closed
] Open

key turned [candle in] / open safe

Decision [Not

Dangerous]

d] / reveal lock J
. @ candle removed [door close mek

key turned [candle out] / release killer rabbit
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What did you learn?

Use Cases, User Stories, Use Case

Diagrams

r Y
Syster.natlc Tests, Test-Drlven DeveIoprT]ent
> System Mgggulra: Class Diagram, Sequence Diagrams,
tate Machines (Activity Diagrams)
< DesigndCRC cardfg Refactoring, Layered Architecture,

Design Principles/ Design Patterns
» Software Development Process:Processes, Project

Planning
» Design by Contract




What did you learn?

v

Requirements: Use Cases, User Stories, Use Case
Diagrams

Testing: Systematic Tests, Test-Driven Development

System Modelling: Class Diagram, Sequence Diagrams,
State Machines, Activity Diagrams

Design: CRC cards, Refactoring, Layered Architecture,
Design Principles, Design Patterns

v

v

v

v

Software Development Process: Agile Processes, Project
Planning

Design by Contract

v

Don't forget the courseevalum)‘




Plan for next weeks

» Next week:

» Guest lecture by Miracle Systems A/S about how the do
software developmen

» Exercises frond15:00 — 17:00)

» Week 13: 13.5., 13:00 — 17:00: 10 min demonstrations of
the software

1 Show that all automatic tests run
2 TA chooses one use case

2.a Show the systematic tests for that use case
2.b Execute the systematic test manually

» Schedule will be published this week
» In Next Week Exercises and Project Demonstrations

» Visit of a film team
» Just say no if you don’t want to be filmed
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