Software Engineering | (02161)
Week 11

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

=
—
=

i

Contents

Design by Contract (DbC)
Contracts
Implementing DbC in Java
Assertion vs Tests
Invariants
Inheritance
Defensive Programming

Activity Diagrams

Summary of the course

What does this function do?

public List<Integer> gégé;(List<Integer> list) |
if (list.size() <= 1) return list;

int k = list.elementAt (0);

List<Integer> 11 = new ArrayList<Integer>();
List<Integer> 12 = new ArrayList<Integer>();
List<Integer> 13 = new ArrayList<Integer>();

partition(k,list,11,13,12);
i qﬁav-
List<Integer> r ='£(11);

r.addAll (13);
r.addAll (Z(12));

govrt
return r;

}

public void partition(int k, List<Integer> list,
List<Integer> 11, List<Integer> 12, List<Integer> 13)

for (int i : list) {
if (i < k) 1l.add(i);
if (i == k) 13.add(i);

if (i > k) 12.add(i);

What does this function do?

public void testEmpy () {
int[] a = {};
List<Integer> r = gsort (Array.aslList(a));
assertTrue (r.isEmpty());

}

public void testOneElement () {
int[] a = { 3 };
List<Integer> r = gsort (Array.asList(a));
assertEquals (Array.asList (3),r);

}

public void testTwoElements () {
int[] a = {2, 1};
List<Integer> r = gsort (Array.asList(a));

assertEquals (Array.asList (1,2),r);

}

public void testThreeElements () {
int[] a = {2, 3, 1};
List<IntegeT> r = gsort (Array.asList (a));
assertEquals (Array.asList (1,2,3),1r);

}

What does this function do?

List<Integer> sort (List<Integer> a)

Coulract @] fumd. corf
Precondition: ais not_null

Postconoﬁ{ctné vI_:_Pr all result, a € List<Integer>:
result ==A(a)
if and only if
,isSorted(result) and §ameEIements(a,resuIt)\
where

isSorted(a) if and only if
forall 0 <i,j < a.size():

i < jimplies a.get(i) < a.get(j
<jimp get(i) < a.get())

—

and
sameElements(a,b) if and only if
for all i € Integer: count(a, i) = count(b, i)

Design by contract

Contract between Caller and the Method

» Caller ensures precondition
L —
» Method ensures postcondition

» Contracts spefn‘nstead of how

Example Counter

IhVawe o
Counter {context Cou;ér
{context Counter :: dec () L int - o= inv: i>=0}
pre.i2 0)
post: i = i@pre -1 } 77 7 [lincQ : void
decQ: void . . .0 -
TS s:L.Fwd

post: i = i@pre + 1}

{context Counter :: inc () Ij

public T n(Tl1 al, .., Tn an, Counter c) (‘P\C +"‘<)

wu. 10 nl\r.r‘oA
// Here the precondition of ¢ has to hold
// to fulfifpthewmw—

c.dec();

~77B=fore returning from dec, c has to ensure the
// postcondition of dec

Bank example with constraints

{context Bank
Bank _ _ _ _ligw accounts->forAli(a | a.owner = self)

1

owner

accoun
0.*

Account

bal : int - ‘|M| >= 0} 5

update(n : int) : void

{pre: bal + n >=0
i gost: bal = bal@pre +n and

history.oclisNew and

history.bal = bal@pre and

1 history.prev = histon

History 0.1

bal : int prev

History() : void

Update operation of Account

{pre: bal + n >=0
post: bal = bal@pre + n and

history.ocllsNew() and
history.bal = bal@pre and
history.prev = history@pre

State before executing
update (n)

{n+b>=0} %—7
T\—CCD\A‘A

a: Account

|
|
|
|
bal=b —— =~ -

prev

h: History
bal=m

Update operation of Account

{pre:. bal+n>=0 OC L
hi;lor rev = history@pre (ﬁ}ﬂc{- (o“)s{—ro" h +
prev = ua
State before executing e
update (n) State after executing
update (n)
fn+b>=0} Il|— T a: Account

bal=b+n

I
| Rl Al
I
a: Account / ﬁav
bal:.b— ’:i;;‘ T hl: History |
bal=b
Prev ———

prev

h: History

bal=m (\ h: History

- bal=m

Example

LibraryApp: jaddMgdinum (Medium m)
pre: adminlLoggedIn

pre ’
post: mediuméese = medium->including(m) and

medium.library = this)

-

LibraryApp::search(String string) : List<Medium>
post: result = medium->select (m |

m.title.contains (string) or

m.autor.contains (string) or

m.signature.contains (string))
medium = medium@pre

User: :borrowMedium (Medium m)

pre: borrowedMedium->size < 10
and m != null
and not (borrowedMedium—->exists (m’

post: m.borrowDate = libApp.getDate() and

| m’.isOverdue))

Postcondition

Assume that result denotes the result of the function
f(x : double). g
(1) post: risult2 =X f;n—:h:g s =X =
2) post: result =x? X
3) post: X2 = result X
4) post: x = result? "
Which statements are correct: (multiple answers are possible)
a) 2 + 3 is the postcondition for the function computing the
square of a number
b) Only 2 is the postcondition for the function computing the
square of a number
c) 3 is the postcondition of the square root function
e) 1 is the postcondition of the square root function

Precondition

» Given the contract for a method minmax(int[|array) in a
class which has instance variables min and max of type
int:

pre: array # null and array.length > 0
post: Vi € array : min < i < max

» Which of the following statements is true: if the client calls
minmax such the precondition is not satisfied

a) A NullPointerException is thrown

b) An IndexOutOfBoundsException is thrown.p

¢) Nothing happens

d) What happens depends on the implementation of minmax \/

Implementing DbC with assertions

» Many languages have an assert construct: assert bexp;
» Contract for Counter::dec(i:int)

Pre:i>0

Post: i = i@pre — 1

Implementing DbC with assertions

» Many languages have an assert construct: assert bexp;
» Contract for Counter::dec(i:int)

Pre:i>0

Post: i = i@pre — 1

void dec () {
assert 1 > 0; // Precondition
int prei = i; // Remember the value of the counter

// to be used in the postcondition
i-=;
assert i == prei-1; // Postcondition

Implementing DbC with assertions

» Many languages have an assert construct: assert bexp;
» Contract for Counter::dec(i:int)

Pre:i>0

Post: i = i@pre — 1

void dec () {
assert 1 > 0; // Precondition
int prei = i; // Remember the value of the counter
// to be used in the postcondition
i-—;
assert i == prei-1; // Postcondition

» assert £ assertTrue

Important

» Assertion checking is switched off by default in Java
1) java -ea Main

2) In Eclipse

Java - Counter/src/dty

Ju 1 TestCounter

Junit = |
g H

L o Configu
B Failures: ammamm—

806

Run Configurations

Create, manage, and run configurations

Create a configuration that will launch a JUnit test.

CExX|[B3-

Name: |TestCounter |

type filter text

] Java Applet
[TJava |

—

= ;. Classpath | =), JRE | &/ Source| ™2

Program arguments:

¥ JuJunit
Ju TestCounter
m2 Maven Build
JujTask Context Tes

Filter matched 6 of 44 |

Variabls

VM arguments:

Apply Revert

@

Implementing DbC in Java

Pre: args # null and args.length > 0
Post: Vn € args : min < n < max

public class MinMax {
int min, max;

public void minmax (int[] args) throws Error ({
assert args != null && args.length != 0;
min = max = args[0];
for (int i = 1; 1 < args.length; i++) {
int obs = argsl[i];
if (obs > max)
max = obs;
else if (min < obs)
min = obs;
}
assert isBetweenMinMax (args);

}

private boolean isBetweenMinMax (int[] array) {
boolean result = true;
for (int n : array) {
result result && (min <= n && n <= max);
}

return result;

Assertions

» Advantage

» Postcondition is checked for each computation
» Precondition is checked for each computation

» Disadvantage

» Checking that a postcondition is satisfied can take as as
much time as computing the result
— Performace problems
» Solution:

» Assertion checking is switched on during debugging and
testing and switched off in production systems
» Only make assertions for precondition
— Preconditions are usually faster to check
— Contract violations by the client are more difficult to find than
postcondition violations (c.f. assertions vs tests)

Assertion vs. Tests

» Assertion
» Check all computations (as long as assertion checking is
switched on)
» Check also for contract violations from the client (i.e.
precondition violations)

» Tests

» Only check test cases (conrete values)
» Cannot check what happens if the contract is violated by
the client

Counter

{context Counter :: dec ()
pre:i>0
post:i=i@pre-1 }

» Methods

Counter

irint

_inv: i>=0}

~ [inc(: void

dec() : void

» assume that invariant holds

» ensure invariants

» When does an invariant hold?

» After construction

» After each public method

{context Counter

{context Counter :: inc ()
post: i = i@pre + 1}

]

Invariants

» Contstructor has to ensure invariant

public Counter () {
i=0;
assert 1 >= 0; // Invariant

}

» Operations ensure and assume invariant

void dec() {
assert 1 >=
assert 1 > 0
int prei = i

// Precondition
// Remember the value of the counter
// to be used in the postcondition

0; // Invariant
;
7

i-—;
assert i == prei-1; // Postcondition
assert i >= 0; // Invariant

Contracts and inheritance

{context C::m
pre: pre’C_m
post: post*C_m}

{contextD :: m
pre: pre*"D_m
post: post*"D_m}

o —>

Contracts and Inheritance

@/ Wing Substitution principle:

At every place, where one can use objects of the superclass C,

one can use objects of the subclass D

public T n(C c)

// has to ensure Pre”C_m
c.m();
// n can rely Post”C_m

» Compare t.n(newC()) with
t.n(newD()).

— PreS — Preb w ondition

— Post® — (Pre = PostS)

stronger postcondition
/

Counter vs. Counter1

Counter and Counter1 are identical with the exception of
operation dec:
» Counter::dec
pre:i >0
post: i = i@pre — 1
» Counteri::dec

pre: true
post: (iQpre > 0) — i= /@9@ —1and
(iQpre <0) = i=

Which statement is true?
a) Counter is a subclass of Counter
b) Counter1 is a subclass of Counter

c) There is no subclass relationship between Counter and
Counter1

Defensive Programming

» Can one trust the client to ensure the precondition?

Defensive Programming

» Can one trust the client to ensure the precondition?
» Defensive Programming: don’t trust the client
void dec() { if (14 > 0) { i--; } }
——

Defensive Programming

» Can one trust the client to ensure the precondition?

» Defensive Programming: don’t trust the client
void dec() { if (i > 0) { i-—; } }

» New Contract: No requirement for the client

» Method has to ensure it works with any argument
D

post: (i@pre > 0) — (i =iQpre — 1) and
(Iopre <0) = (i=0)
e ——

(__7 I—OQ_QQ\\AC@ O&
WU Qhow .

Defensive Programming

v

Can one trust the client to ensure the precondition?
Defensive Programming: don'’t trust the client
void dec() { if (i > 0) { i-—; } }

New Contract: No requirement for the client

» Method has to ensure it works with any argument
pre: true
post: (i@pre > 0) = (i =i@pre —1) and
(iepre < 0) = (i=0)
Or, using dider speEatos
pre: true
post(ii@pre > gh = (i=i0pre—1)

v

v

v

Defensive Programming
\J 30«» CGA"[conhol the C("*"h\'
Pkcmd. IJUou Cen

Framework

- PublicClass PackagePrivateClass
Client
+n

| m
// s

Aefemnsi ve .
4) ~d how u(quh({vf Pre). vxsr.")lg

Defensive Programming

PresentationLayerl

PresentationLayer2

GUIClass

GUIClass

ApplicationLayer

ApplicationClass

+n

AP

Defensive Programming

Given method contracts 1)

LibraryApp: :addMedium (Medium m)

pre: adminLoggedIn

post: medium@pre = medium->including(m) and
medium.library = this)

LibraryApp: :addMedium (Medium m)
post: adminLoggedIn implies
medium@pre = medium->including (m) and

medium.library = this)
Ve © e
Which statement is correct?

a) 1) uses defensive programming

@es defensive program

Contents

Design by Contract (DbC)
Activity Diagrams

Summary of the course

Activity Diagram: Business Processes

!

Confirm
Detention [Not Available]

Decision
Find Secure
Place

[Dangerous]

Transfer to

Police Station

[Available]

Inform
Social Care
Inform Next
of Kin
Update
Register
esystems «systemn «system»
MHC-PMS Admissions MHC-PMS
System

Transfer to
Secure
Hospital

Inform
Patient of
Rights

Record
Detention
Decision

Admit to
Hospital

[Not
Dangerous]

» Describe the context of the system
» Helps finding the requirements of a system

» modelling business processes leads to suggestions for
possible systems and ways how to interact with them

» Software systems need to fit in into existing business
processes

lan Sommerville, Software Engineering — 9, 2010

Activity Diagram Example Workflow

Customer Telesales Accounting Warehouse

Request return
| (Get return number

Cowm
Item
[returned]

Receive item

Restock item

/

Credit account

Item
[available]

Activity Diagram Example Operation

else

[slope = line.slope] fe——
return Point(0,0) ;%(@

@ = (line.delta - delta) / (slope - Iina.slupa})

G := {slope *

®) + dalla)

/

return Paint(x.y)

UML Activity Diagrams

Focus is on control flow and data flow

v

v

Good for showing parallel/concurrent control flow
Purpose

» Model business processes
» Model workflows
» Model single operations

Literature: UML Distilled by Martin Fowler

v

v

Activity Diagram Concepts

S
» Actions 2=

» Are atomic
» E.g Sending a message, doing some computation, raising
an exception, ...
» UML has approx. 45 Action types

» Concurrency

¥

» Fork: Creates concurrent flows | |
» Can be true concurrency
» Can be interleaving
\
» Join: Synchronisation of concurrent activities
» Wait for all concurrent activities to finish (based on token
semantics)
W

[pricrity order]
» Decisions < |

» Notation: Diamond with conditions on outgoing transitions
» else denotes the transition to take if no other condition is
satisfied

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

Receive
Order

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Activity Diagrams Execution

initial nede

[pricrity ordar] .

Overnight Regular

Delivery Delivery
4

activity final

Swimlanes / Partitions

» Swimlanes show who is performing an activity

Fulfillment Customer Service Finance

Receive
Order

Send
Invoice

Receive ‘
Payment

Deliver
Order

Close
Order

Objectflow example

Customer

Request product

P Process order

Warehouse

abject flow

: Order
lin progress]

Pull materials
Ship order

illed].

\
abject

Receive order

Bill customer

bject flow.

Data flow and Control flow

» Data flow and control flow are shown:

Receive

Invoice /)

Order

Make

\ Payment

» Control flow can be omitted if implied by the data flow:

Receive
Invoice

Order

Make
Payment

Use of Activity Diagrams

» Emphasise on concurrent/parallel execution
» Requirements phase
» To model business processes / workflows to be automated
» Design phase
» Show the semantics of one operation
» Close to a graphic programming language

Activity Diagram vs State Machines

Confirm
Detention
Decision

Transfer to
Secure
Hospital

[Dangerous]
Update
Register

«systemy «system»

Admissions MHC-PMS

System

safe closed
] Open

key turned [candle in] / open safe

Decision [Not

Dangerous]

d] / reveal lock J
. @ candle removed [door close mek

key turned [candle out] / release killer rabbit

Contents

Design by Contract (DbC)
Activity Diagrams

Summary of the course

What did you learn?

Use Cases, User Stories, Use Case

Diagrams

r Y
Syster.natlc Tests, Test-Drlven DeveIoprT]ent
> System Mgggulra: Class Diagram, Sequence Diagrams,
tate Machines (Activity Diagrams)
< DesigndCRC cardfg Refactoring, Layered Architecture,

Design Principles/ Design Patterns
» Software Development Process:Processes, Project

Planning
» Design by Contract

What did you learn?

v

Requirements: Use Cases, User Stories, Use Case
Diagrams

Testing: Systematic Tests, Test-Driven Development

System Modelling: Class Diagram, Sequence Diagrams,
State Machines, Activity Diagrams

Design: CRC cards, Refactoring, Layered Architecture,
Design Principles, Design Patterns

v

v

v

v

Software Development Process: Agile Processes, Project
Planning

Design by Contract

v

Don't forget the courseevalum)‘

Plan for next weeks

» Next week:

» Guest lecture by Miracle Systems A/S about how the do
software developmen

» Exercises frond15:00 — 17:00)

» Week 13: 13.5., 13:00 — 17:00: 10 min demonstrations of
the software

1 Show that all automatic tests run
2 TA chooses one use case

2.a Show the systematic tests for that use case
2.b Execute the systematic test manually

» Schedule will be published this week
» In Next Week Exercises and Project Demonstrations

» Visit of a film team
» Just say no if you don’t want to be filmed

	Design by Contract (DbC)
	Contracts
	Implementing DbC in Java
	Assertion vs Tests
	Invariants
	Inheritance
	Defensive Programming

	Activity Diagrams
	Summary of the course

