
Software Engineering I (02161)
Week 10

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

Contents

Design Patterns
Composite Pattern
Template Method
Visitor Pattern
Facade
Strategy / Policy
Decorator
Adapter / Wrapper

Activity Diagrams

Composite Pattern

Problem: Graphics Editor
I Line, Rectangle Text

I can be drawn
I Picture: can contain Line, Rectangle, Text and Picture

I can be drawn

Composite Pattern

Composite Pattern
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects and
compositions of objects uniformly.

Composite Pattern: Graphics

I Class Diagram

I Instance diagram

Template Method Problem

Overdue message for Book:
1 compute due date for a book

a get the current date
b add the max days for loan for the book

2 check if the current date is after the due date
Overdue message for CD:

1 compute due date for a cd
a get the current date
b add the max days for loan for the cd

2 check if the current date is after the due date

Template method

I Create a template method in class Medium:
1 compute due date for a medium

a get the current date
b add the max days for loan for that medium

2 check if the current date is after the due date
I In book method for getMaxDaysForLoan returning 4 weeks
I In CD getMaxDaysForLoan returns 2 weeks

Template Method

Cd
..
..
getMaxDaysForLoan():int

Medium
..
..
getMaxDaysForLoan():int
isOverdue():bool

Book
..
..
getMaxDaysForLoan():int

public abstract class Medium {

public boolean isOverdue() {
if (!isBorrowed()) {
return false;

}
Calendar date = libApp.getDate();
Calendar latestReturnDate = new GregorianCalendar();
latestReturnDate.setTime(borrowDate.getTime());
latestReturnDate.add(Calendar.DAY_OF_YEAR, getMaxDaysForLoan());
return latestReturnDate.before(date);

}

public abstract int getMaxDaysForLoan();
}

Template Method

Template Method
Define the skeleton of an algortihm in an operation, deferring
some steps to subclasses. Template Method lets sublcasses
redefine certain steps of an algorithm without changing the
algorithm’s structure.

ConcreteClass2

primitiveMethod1
primitiveMethod2
...

AbstractClass

templateMethod
primitiveMethod1
primitiveMethod2
...

ConcreteClass1

primitiveMethod1
primitiveMethod2
...

The template method defines its algortihm based on
primitiveMethod1, ...

PrimitiveMethod1, ... in AbstractClass are usually
abstract, but they could also define some default
behavior.

Template Method

public abstract class Application {
public void openDocument(String name) {
if (canOpenDocument(name)) {
Document doc = createDocument(name);
if (doc != null) {
docs.add(doc);
aboutToOpenDocument(doc);
doc.open();
doc.read();

}
}

}
}

Visitor Pattern: Problem

I Define a mechanism to define algorithms on complex
datastructures without modifying the class, e.g. if the class
is a library class

I For example, add a computeCost algorithm without adding
the method to the class

Component
*

AssemblyPart
cost

Bike
I Frame (1000 kr)
I Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)
I Wheel: 28 spokes (1 kr), rim (100 kr), tire (100 kr)

Example: compute costs for components

Component

computeCost()

{int costs = 0;
 foreach (Component c : components) {
 costs += c.computeCost();
 }
 return costs;
}

*

{return cost}

Assembly

computeCost()

Part
cost
computeCost()

Example: compute costs as a visitor

Visitor

visitPart(Part p)
visitAssembly(Assembly a)

Function

visitPart(Part p)
visitAssembly(Assembly a)

ComputeCosts

visitPart(Part p)
visitAssembly(Assembly a)

{ int costs = 0;
 for (Component c : a.getComponents()) {
 costs += c.acceptVisitor(this);
 }
 return costs;
}

{v.visitAssembly(this)}

{return p.getCost()}

{v.visitPart(this)}

Component

acceptVisitor(Visitor v) *

Assembly

acceptVisitor(Visitor v)

Part
cost
acceptVisitor(Visitor v)

Compute costs as a visitor

 Copmpute Costs as Visitor

Visitor Pattern

Visitor Pattern
Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

Double Dispatch: Problem I

Define a plus method for MyFloat and MyInteger classes (both
subclasses of MyNumber) without using conditionals

I In MyFloat
public MyFloat plus(MyNumber n) {

if (n instanceof MyFloat) {
return this.plusFloat(n);

}
if (n instanceof MyInteger) {

return this.plusFloat(n.convertToFloat());
}

}

Double Dispatch: Problem II

I In MyInteger
public MyFloat plus(MyNumber n) {

if (n instanceof MyFloat) {

}
if (n instanceof MyInteger) {

}
}

Double Dispatch: Solution

Using double dispatch:
I In MyFloat

public MyNumber plus(MyNumber n) {
return n.plusFloat(this);

}

public MyNumber plusFloat(MyFloat n) {
return ... // Do the computation on floats

}
public MyNumber plusInteger(MyInteger n) {

return this.plus(n.convertToFloat());
}

I In MyInteger
public MyNumber plus(MyNumber n) {

}
public MyNumber plusFloat(MyFloat n) {

}
public MyNumber plusInteger(MyInteger n) {

}

Double Dispatch: Compute 3 + 4.5

 Double Dispatch

Facade

Facade
Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the
subsystems easier to use.

Design Patterns, Addison-Wesley, 1994

Example Compiler

Design Patterns, Addison-Wesley, 1994

Example Persistency Layer

Layered Architecture

Use Facades to provide simple interfaces to the different layers

Eric Evans, Domain Driven Design, Addison-Wesley, 2004

Strategy / Policy: Problem

Different strategies for layouting text: simple, TEX, array,
. . . Example: Text formatting

Composition

Repair()

public void repair() {
...
if (strategy = "simple")

// Do simple linebreak
else if (strategy = "tex")

// Use TeX’s algorithm
else if (strategy = "array")

// Do array style linebreak
..

}

Strategy Pattern: Solution

Design Patterns, Addison-Wesley, 1994

Strategy / Policy

Strategy / Policy
Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Design Patterns, Addison-Wesley, 1994

Decorator: Problem

I Composing a set of functionalities
I Eg. Basic windows, windows with borders, windows with

scrollbars

Example: Window decorators

Design Patterns, Addison-Wesley, 1994

Example: Window decorators

Design Patterns, Addison-Wesley, 1994

Decorator

Decorator
I Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for
extending functionality.

Design Patterns, Addison-Wesley, 1994

Adapter / Wrapper: Problem

I I want to include a text view as part of my graphic shapes
I Shapes have a bounding box
I But text views only have an method GetExtent()

Example: Using text views in a graphics editor

Design Patterns, Addison-Wesley, 1994

Adapter / Wrapper

Adapter / Wrapper
Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Design Patterns, Addison-Wesley, 1994

Contents

Design Patterns

Activity Diagrams

Activity Diagram: Business Processes

I Describe the context of the system
I Helps finding the requirements of a system

I modelling business processes leads to suggestions for
possible systems and ways how to interact with them

I Software systems need to fit in into existing business
processes

Ian Sommerville, Software Engineering – 9, 2010

Activity Diagram Example Workflow

Activity Diagram Example Operation

UML Activity Diagrams

I Focus is on control flow and data flow
I Good for showing parallel/concurrent control flow
I Purpose

I Model business processes
I Model workflows
I Model single operations

I Literature: UML Distilled by Martin Fowler

Activity Diagram Concepts

I Actions
I Are atomic
I E.g Sending a message, doing some computation, raising

an exception, . . .
I UML has approx. 45 Action types

I Concurrency

I Fork: Creates concurrent flows
I Can be true concurrency
I Can be interleaving

I Join: Synchronisation of concurrent activities
I Wait for all concurrent activities to finish (based on token

semantics)

I Decisions
I Notation: Diamond with conditions on outgoing transitions
I else denotes the transition to take if no other condition is

satisfied

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Activity Diagrams Execution

Swimlanes / Partitions

I Swimlanes show who is performing an activity

Objectflow example

Data flow and Control flow

I Data flow and control flow are shown:

Order Make
Payment

Receive
Invoice

I Control flow can be omitted if implied by the data flow:

Order Make
Payment

Receive
Invoice

Use of Activity Diagrams

I Emphasise on concurrent/parallel execution
I Requirements phase

I To model business processes / workflows to be automated
I Design phase

I Show the semantics of one operation
I Close to a graphic programming language

Activity Diagram vs State Machines

	Design Patterns
	Composite Pattern
	Template Method
	Visitor Pattern
	Facade
	Strategy / Policy
	Decorator
	Adapter / Wrapper

	Activity Diagrams

