Software Engineering | (02161)
Week 9

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

=
—
=

i

Contents

Sequence Diagrams
Obiject-orientation: Centralized vs Decentralized Control/Computation
Basic Principles of Good Design

Design Patterns

Sequence Diagram

public class Order {

List<OrderLine> orderLines = new ArrayList<OrderLine>();
private Customer customer;
double baseValue = 0;

public double calculatePrice() {
for (OrderLine ol : orderLines) {
baseValue += ol.calculatePrice();

}

return customer.getDiscountedValue (this);

}

public double getBaseValue () {
return baseValue;
}

Sequence Diagram

public class OrderLine {

private int quantity;
private Product product;

public double ulatePrice () {
return producf.getPrice (quantity);
}

public class Product {
private double pricingDetails;
public double getPrice (int quantity) {
return pricingDetails * quantity;

}
}

public class Customer {

public double getDiscountedValue (Order order)

return (1 - B57T00)*order.gecBaseValue(); // 5%

}
}

{

discount

Sequence diagram

One Scavand onlj

an Order an Order Line aProduct aCustomer
calculatePrice [| 1
L 5 > | |
N calculatePrice |
) = tPri antity: number
,'(w wd Cﬁ'&cac -— getPrice(quantity: nul .;) J

| getDiscountedValue (an Order) 1

A

| getBaseValue \

discountedValue T

Creation and deletion of participants
é/ O5feck or a role ow oSect H"JS

a Handler

& Synchr, messeles g Losk messay

- asg\nolq. WesSa fes

I
<
=
new. 4 a Query
A\ Command
AN

new o a Database

Arrow types

s/

o E

async call

async call

sync call

synt/call

A 4

\ 4
-

-~

asyn€ call
7

SAX < <<

return

Interaction Frames Example

Realising an algorithm using a sequence diagram

public void dispatch() {
for (Lineltem lineltem : lineltems) {
ié_(lineltem.getValue() > 10000) {
careful.dispatch();
} else {
regular.dispatch();
}

}

if (needsConfirmation()) {

— .
messenger.confirm() ;

}

Realisation with Interaction Frames

'D\kv-ac‘b’au -(Veme >
T~

i Contutor | | Dortatar | | Messerger
dispatch] I | l
1t i F |
pletels] [for each line item] | ‘ 1
|
at) ivalue > $10000] | | |
s dispatch ‘ [|
l J
777777777777777777 1 STRRUTIN e |
[else]] ‘ ’
dispatch ‘ }
-
|
| !
i + |
S _opt) [needlsConVivmallon] | confirm | B 1
I— 1
| i | |
T T

+

Interaction Frame Operators |

Operator Meaning
alt Alternative multiple fragments; only the one whose condition is
true will execute (Figure 4.4).
_opt Optional; the fragment executes only if the supplied condition is
true. Equivalent to an alt with only one trace (Figure 4.4).
par Parallel; each fragment is run in parallel.
Toop Loop; the fragment may execute multiple times, and the guard

indicates the basis of iteration (Figure 4.4).

Critical region; the fragment can have only one thread executing it
at once.

neg

Negative; the fragment shows an invalid interaction.

BE) |

Reference; refers to an interaction defined on another diagram. The
frame is drawn to cover the lifelines involved in the interaction.
You can define parameters and a return value.

Sequence diagram; used to surround an entire sequence diagram, if
you wish.

Interaction Diagrams

Interaction Diagrams = Sequence + Communication Diagrams

Sequence Diagram

[cciem | Communication Diagram
M are(l : Transaction [C;C_ﬁ_ﬂ]
setActions(a, d, o) | g
setValues(d, 3.4) ' i(zh}%s(& d, 0)
impad 3: destro
setValues(a, "CO {local)

. {commited) | o: Transaction proxy {globall o7 OpBDProxy
' H —

= 7 2.1 : setValues(d 3.4)
—_— '
ﬂ : setValues(a, "CQ")

FOCMS.' | 1'4 OS’.“.I' S'Yuc‘. 1< I'w‘oorhwl-

Usages of sequence diagrams

» Abstract: show the execution (i.e. exchange of messages)
—_——
of a system
» Concrete

»(Design (c.f. CRC cards]>

» Visualize program behaviour
— —

Use Case: borrow book

Use a.‘ S??. O(l'cér. examinchon k{»rl’

name: borrow book
description: the user borrows a book
actor: user

mai .
1. the user borrows a book

alternative scenario
1. the user wants to borrow a book, but has already 10 books
borrowed
2. the system presents an error message

Program: borrow book

public class User extends PersistentObject {
public void borrowMedium (Medium medium) throws BorrowException ({
e

if (mediul == nu
return;
if (borrowedMedia.size() >= 10) {

throw new TooManyBooksException();
}
for (Medium mdm : borrowedMedia) {
if (mdm.isOverdue()) {
throw new HasOverdueMedia () ;
}
}
medium.setBorrowDate (1ibApp.getDate());
borrowedMedia.add (medium) ;
try {
libApp.getPersistencylLayer () .updateUser (this);
} catch (IOException e) {
throw new Error (e);
}
}
}

Sequence diagram: borrow book success scenario

Use Cage SCQUVOWVOD

Contents

Sequence Diagrams
Obiject-orientation: Centralized vs Decentralized Control/Computation
Basic Principles of Good Design

Design Patterns

Marriage Agency: centralized control

MarriageAgency

Customer

match EEE(c): Customer[*]

sex:String
birthYear:int
interests:String[*]

Marriage Agency: centralized control

sd match centralized
‘ user ‘ ‘ :MarriageAgency ‘ ‘ c:Customer ‘ ‘ p:Customer
T T T T
G | |
D D i i
! !
o [ol I I
100 foL\EII customers e L |
getSex)| |
—— !
|
K============" I
.
qe@x N
T
- [P ——
getBirthYear)| T
|
TR —— |
L
getBirthYear N
]
- [P ——
L
getinterests N T
|
TR —— |
L
getlntbrests N
]
- [P ——
= = } =
| | |
|
+f(N. | |
Ke——— === ———== | !
| |
| |

Marriage Agency: decentralized/distributed control

sd match decentralized

’ user ‘ ’ :MarriageAgency ‘ @ p:Customer
T
I

T = 1

T

match(c :

|

loop [forlall customers I }
o L

I
|
1
I
match(p, I
—— |
I
hasQopogsitesex(p) |
Y etSex

hasAeeroErlateAge(p) !
etBirthYear

T
? hasOnelnterestinComnhon(p)
getinterests

—1 —
P S—

L1
3

Marriage Agency: decentralized/distributed control

MarriageAgency Customer
<@Fc):€ustomer[*] .~ | sex:String

birthYear:int
interests:String[*]
match(c:Customer)
hasOppositeSex(c)
hasAppropriateAgeDifference(c)
hasOnelnterestinCommon(c)

[Real oS,'w{s : Slc "(-I» op.wa:’\bu;

Distributed control

an Order an Order Line aProduct aCustomer
calculatePrice ’ I []
calculatePrice | [|
#— getPrice(quantity: number)]
Ij |
| getDiscountedValue (an Order) |

getBaseValue \

""""" 77 dscountedvaive |

Distributed Control: Class diagram

Order Customer
calculate price name)
calculate base price 17 | discount info
calculate discounts calculate discount
*
OrderLine Product
quantity name
calculate price 17 | price
get price for quantity

Centralised control

calculatePrice
P

an Order an Order Line

aProduct

aCustomer

[I

getQuantity

o

getProduct

aProduct

getPricingDetails

T

calculateBasePrice |

I

l

calculateDiscounts
1

e | | getDiscountinfo

y
== =

\
\

Centralized control

Order

Customer

calculate price
calculate base price
calculate discounts

name
discount info

*

OrderLine

quantity

Product

name
price

Centralized vs Distributed control

» Centralized control

» One method

» Data objects

— procedural programming language
» Distributed control

» Objects collaborate

» Objects = data and behaviour

— Object-orientation
» Advantage

» Easy to adapt
— Design for change

Design for change: centralized control

MarriageAgency

Customer

matchCustomer(c):Customer[*]
matchCustomerTypeA(c):boolean
matchCustomerTypeB(c):boolean

sex:String
birthYear:int
interests:String[*]

f

CustomerTypeA

CustomerTypeB

Design for change: centralized control

sd match centralized

|

:MarriageAgency ‘ ’ c:Customer ‘

’ p:Customer

p.w

for\all customers

alt

f CustomerTypeA| D matchCustomerA

getAge

matchCustomerB

getinterests

i

getinterests

L1
L3

T
|
|
|
T
|
!
!
|
1

Design for change: decentralized control

MarriageAgency Customer
matchCustomer(c):Customer[*] | sex:String
birthYear:int
in String[*

(match(c:Customer)

| |

CustomerTypeA CustomerTypeB
match(c:Customer) match(c:Customer)
—————

-

%mei: wal N t‘-h.

Design for chang
¥

s\decentralized control

sd match decentralized

‘ MarriageAgency ‘

match(cl;

il

‘ cl:CustomerTypeA ‘ ‘ c2:CustomerTypeB ‘ p:Customer
T T T

i
I
i
loop [for dll customers]/ | }
match(p; 1
|
getAge
|
-~ o
I
R T 1 I
= = : I
| | | | !
o o H | |
SR USSR | i | !
| | !
match(c2) I | 1
L] L] ! ! w
loop [for all customers’ | | | :
= o J
match(p) |
I !
getinterests D
P
= SS

Contents

Sequence Diagrams

Obiject-orientation: Centralized vs Decentralized Control/Computation
¢y o tndlershand '
Basic Principles of Good Design

lulewl:’ou km(ﬁ"% hawes
Design Patterns Agkaplgélp_

?er-(Ormancz N

low CourQ:i«ua / high cohesion

"Rewse”

DRY principle

DRY principle

Don’t repeat yourself

"Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.” rme pragmatic rogrammer, Andgrew

Hunt and David Thomas

» code

» docum i
P —

» build stystem

Example: Code Duplication

Person

name

| cpr-number

companyNa

home-address-street ?

home-address-city

printAddress
works at»

Company

) name

c-address-street |
c-address-city
printAddress —

Example: Code Duplication

Person

name

cpr-number
home-address-street
home-address-city

Address

printAddres

workp at»

Company

name
c-address-street
c-address-city

printAddress

Company

Person
name fTome addre street
cpr-number —(city
DReintAddress
workp at» ,4[/—
(Chame)

DRY principle

» Techniques to avoid duplication

» Use appropriate abstractions
» Inheritance

» Classes with instance variables
ethods with paramete
» Refactor to remove duplication
» Generate artefacts from a common source. Eg. Javadoc

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple,
stupid)

» simplest solution first
» Strive for simplicity

» Takes time!!

» refactor for simplicity

Antoine de Saint Exupéry

"It seems that perfection is reached not when there is nothing
left to add, but when there is nothing left to take away”.

YAGNI principle

YAGNI principle
You ain’t gonna needed it

» Focus on the task at hand

» E.g. using the observer pattern because it might be
needed

— Different kind of erX|b|I|ty

> fmake your design changa j
> tests, easy to refactor bo\ O\\./\ C&

& _design for cﬁan_‘gg
» Use good OO principles

» High cohesion, low coupling
» Decentralized control

Contents

Sequence Diagrams
Object-orientation: Centralized vs Decentralized Control/Computation
Basic Principles of Good Design

Design Patterns
Observer Pattern

Patterns in Architecture

Froletn

fovrceg

Solehou

182 EATING ATMOSPHERE

. we have already pointed out how vitally important all kigds
of communal cating azc in helping to maintain 2 bond among 4
group of people—coMMUNAL EATING (147) 5 and we have given
some idea of how the common eating may be placed as part of th
kitchen itself—rarmuouse xrresen (139). This pattern gives
some details of the eating atmosphere.

oo

When people eat together, they may actually be together
in spirit—or they may be far apart. Some rooms invite
people to eat leisurely and comfortably and feel together,
while others force people to cat as quickly as possible sg
they can go somewhere else to relax.

Above all, when the table hzs the same light all over it, nd
has the same light level on the walls around it, the light does
nothing to hold people together; the intensity of fecling is quite
likely to disolve; there is ittle sense that there is any special
kind of gathering. But when there is a soft light, hung low over
the table, with dark walls around so that this one point of light
lights up people’s faces and is a focal point for the whole group,
then a meal can become a special thing indeed, @ bond, com-
‘munion.

“Therefore:

Put a heavy table in the center of the eating space—
large enough for the wholc family or the group of people
using it. Put a light over the table to create a pool of light
over the group, and enclose the space with walls or with
contrasting darkness. Make the space large enough so the
chairs can be pulled back comfortably, and provide shelves
and counters close at hand for things related to the meal.

A Pattern Language, Christopher Alexander, 1977

BUILDINGS

light in the middle

Gk

Get the details of the light from PooLs oF LiGuT (252); and
choose the colors to make the place warm and dark and com-
fortable at night—wary corors (250); put a few soft chairs
nearby—DIFFERENT CHAIRS (251); or put BUILT-IN SEATS
(202) with big cushions against one wall; and for the storage
spice—oPEN suELVES (200) and WAIST-HIGH SHELF (201). . . .

Pe] ched R Hﬂfﬂs

Pattern and pattern language

» Pattern: a solution to a problem in a_context

@m}set of related patterns

Desg». 2 Hevus

History of Patterns

» Chstiopher Alexander: Architecture (1977/1978)

» Kent Beck and Ward Cunningham: Patterns for Smalltalk
applications (1987
sign Patterns book (1994 GO F
» Portland Pattern Repository http://c2.com/ppr
— origin of wikis

http://c2.com/ppr

Patterns

» Defined in the De3|gn Pattern ngk

Best practices for object-oriented softwarej
— use of distributed control

» Types: Creationai Eatterns, Structural Patterns, Behavioral
Patterns
» Places to find patterns:
» Wikipedia http://en.wikipedia.org/wiki/Design_
pattern_ (computer_science)
» Portland Pattern repository http:
//c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)
» Wikipedia
http://en.wikipedia.org/wiki/Category:
Software_design_patterns

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Design Pattern structure

> AIexand '@w Related
~

Pattern

» Design Patterns: Intent, Mativiation, Applicability,
éfructi]?@_@@s, Collaborations, Consequences,

ImplementationcSample Cose, Known Uses, Relat
Patterns

Observer Pattern

Observer Pattern

Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

observers

—— change notification
———- requests, modifications

subject

Obcey rev Paklc\m

Observer Pattern

Observasle = SLS}‘Q(,{-

observers L Observer

Attach(Observer)

'Update()
Wetach(Obgsiyer) for all o in observers {
"""" 0->,)
ConcreteObserver
N subject -} -] observerState =
Update() > subject->GetState()
Sl
< GetStateii D return subjectState observerState
subjectState

Observer Pattern

aConcreteSubject aConcreteObserver anotherConcreteObserver

: Notify%

: Update()
(Get§taie'('r

TUpdaed) T

N
GetState
o8 I-J

Implementation in Java

> java.util.Observer: Interface
_UpdaiefObservable o, Object aspect)
> java.util, Observable: Abstract class <
» addObserver, deleteObserver % howe au \'m‘,l.
» setChanged
» notifyObservers(Object aspect)

	Sequence Diagrams
	Object-orientation: Centralized vs Decentralized Control/Computation
	Basic Principles of Good Design
	Design Patterns
	Observer Pattern

