
Software Engineering I (02161)
Week 9

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

Contents

Sequence Diagrams

Object-orientation: Centralized vs Decentralized Control/Computation

Basic Principles of Good Design

Design Patterns

Sequence Diagram

public class Order {

List<OrderLine> orderLines = new ArrayList<OrderLine>();
private Customer customer;
double baseValue = 0;

public double calculatePrice() {
for (OrderLine ol : orderLines) {
baseValue += ol.calculatePrice();

}
return customer.getDiscountedValue(this);

}

public double getBaseValue() {
return baseValue;

}
}

Sequence Diagram

public class OrderLine {

private int quantity;
private Product product;

public double calculatePrice() {
return product.getPrice(quantity);

}

}

public class Product {

private double pricingDetails;

public double getPrice(int quantity) {
return pricingDetails * quantity;

}
}

public class Customer {

public double getDiscountedValue(Order order) {
return (1 - 5/100)*order.getBaseValue(); // 5% discount

}
}

Sequence diagram

Creation and deletion of participants

Arrow types

a:A b:B

async call

sync call

return

async call

sync call
async call

Interaction Frames Example

Realising an algorithm using a sequence diagram

public void dispatch() {
for (LineItem lineItem : lineItems) {
if (lineItem.getValue() > 10000) {
careful.dispatch();

} else {
regular.dispatch();

}
}
if (needsConfirmation()) {
messenger.confirm();

}
}

Realisation with Interaction Frames

Interaction Frame Operators I

Interaction Diagrams

Interaction Diagrams = Sequence + Communication Diagrams
Sequence Diagram

Communication Diagram

Usages of sequence diagrams

I Abstract: show the execution (i.e. exchange of messages)
of a system

I Concrete
I Design (c.f. CRC cards)
I Visualize program behaviour

Use Case: borrow book

name: borrow book
description: the user borrows a book
actor: user

main scenario:
1. the user borrows a book

alternative scenario
1. the user wants to borrow a book, but has already 10 books

borrowed
2. the system presents an error message

Program: borrow book

public class User extends PersistentObject {
public void borrowMedium(Medium medium) throws BorrowException {
if (medium == null)
return;

if (borrowedMedia.size() >= 10) {
throw new TooManyBooksException();

}
for (Medium mdm : borrowedMedia) {
if (mdm.isOverdue()) {
throw new HasOverdueMedia();

}
}
medium.setBorrowDate(libApp.getDate());
borrowedMedia.add(medium);
try {
libApp.getPersistencyLayer().updateUser(this);

} catch (IOException e) {
throw new Error(e);

}
}

}

Sequence diagram: borrow book success scenario

Contents

Sequence Diagrams

Object-orientation: Centralized vs Decentralized Control/Computation

Basic Principles of Good Design

Design Patterns

Marriage Agency: centralized control

Customer
sex:String
birthYear:int
interests:String[*]

MarriageAgency

matchCustomer(c):Customer[*] *

Marriage Agency: centralized control

 sd match centralized

loop [for all customers p]

Marriage Agency: decentralized/distributed control
 sd match decentralized

loop [for all customers]

Marriage Agency: decentralized/distributed control

Customer
sex:String
birthYear:int
interests:String[*]
match(c:Customer)
hasOppositeSex(c)
hasAppropriateAgeDifference(c)
hasOneInterestInCommon(c)

MarriageAgency

matchCustomer(c):Customer[*] *

Distributed control

Distributed Control: Class diagram

Order

calculate price
calculate base price
calculate discounts

Product
name
price
get price for quantity

Customer
name
discount info
calculate discount

OrderLine
quantity
calculate price

 *

1

1

Centralised control

Centralized control

Order

calculate price
calculate base price
calculate discounts

Product
name
price

Customer
name
discount info

OrderLine
quantity

 *

1

1

Centralized vs Distributed control

I Centralized control
I One method
I Data objects
→ procedural programming language

I Distributed control
I Objects collaborate
I Objects = data and behaviour
→ Object-orientation

I Advantage
I Easy to adapt
→ Design for change

Design for change: centralized control

Customer
sex:String
birthYear:int
interests:String[*]

MarriageAgency

matchCustomer(c):Customer[*]
matchCustomerTypeA(c):boolean
matchCustomerTypeB(c):boolean

*

CustomerTypeA CustomerTypeB

Design for change: centralized control

 sd match centralized

loop [for all customers]

alt [c instanceof CustomerTypeA]

Design for change: decentralized control

Customer
sex:String
birthYear:int
interests:String[*]
match(c:Customer)

MarriageAgency

matchCustomer(c):Customer[*] *

CustomerTypeA

match(c:Customer)

CustomerTypeB

match(c:Customer)

Design for change: decentralized control

 sd match decentralized

loop [for all customers]

loop [for all customers]

Contents

Sequence Diagrams

Object-orientation: Centralized vs Decentralized Control/Computation

Basic Principles of Good Design

Design Patterns

DRY principle

DRY principle
Don’t repeat yourself
”Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.” The Pragmatic Programmer, Andrew

Hunt and David Thomas

I code
I documentation
I build stystem

Example: Code Duplication

Example: Code Duplication

Company
name
c-address-street
c-address-city
printAddress

Address
street
c i ty
printAddress

Company
name

Person
name
cpr-number

works at

home address

address

Person
name
cpr-number
home-address-street
home-address-city
printAddress

works at

DRY principle

I Techniques to avoid duplication
I Use appropriate abstractions
I Inheritance
I Classes with instance variables
I Methods with parameters

I Refactor to remove duplication
I Generate artefacts from a common source. Eg. Javadoc

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple,
stupid)

I simplest solution first
I Strive for simplicity

I Takes time!!
I refactor for simplicity

Antoine de Saint Exupéry
”It seems that perfection is reached not when there is nothing
left to add, but when there is nothing left to take away”.

YAGNI principle

YAGNI principle
You ain’t gonna needed it

I Focus on the task at hand
I E.g. using the observer pattern because it might be

needed

→ Different kind of flexibility
I make your design changable

I tests, easy to refactor
I design for change

I Use good OO principles
I High cohesion, low coupling
I Decentralized control

Contents

Sequence Diagrams

Object-orientation: Centralized vs Decentralized Control/Computation

Basic Principles of Good Design

Design Patterns
Observer Pattern

Patterns in Architecture

A Pattern Language, Christopher Alexander, 1977

Pattern and pattern language

I Pattern: a solution to a problem in a context
I Pattern language: set of related patterns

History of Patterns

I Chstiopher Alexander: Architecture (1977/1978)
I Kent Beck and Ward Cunningham: Patterns for Smalltalk

applications (1987)
I Design Patterns book (1994)
I Portland Pattern Repository http://c2.com/ppr

→ origin of wikis

http://c2.com/ppr

Design Patterns

I Defined in the Design Pattern Book
I Best practices for object-oriented software

→ use of distributed control
I Types: Creational Patterns, Structural Patterns, Behavioral

Patterns
I Places to find patterns:

I Wikipedia http://en.wikipedia.org/wiki/Design_
pattern_(computer_science)

I Portland Pattern repository http:
//c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

I Wikipedia
http://en.wikipedia.org/wiki/Category:
Software_design_patterns

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Design Pattern structure

I Alexander: Context, Problem, Forces, Solution, Related
Pattern

I Design Patterns: Intent, Motiviation, Applicability,
Structure, Participants, Collaborations, Consequences,
Implementation, Sample Code, Known Uses, Related
Patterns

Observer Pattern

Observer Pattern
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Observer Pattern

Observer Pattern

Implementation in Java

I java.util.Observer: Interface
I update(Observable o, Object aspect)

I java.util.Observable: Abstract class
I addObserver, deleteObserver
I setChanged
I notifyObservers(Object aspect)

	Sequence Diagrams
	Object-orientation: Centralized vs Decentralized Control/Computation
	Basic Principles of Good Design
	Design Patterns
	Observer Pattern

