
Software Engineering I (02161)
Week 8

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013



Contents

Software Development Process (cont.)

From Requirements to Design: CRC Cards

Version control



Resource Triangle: Waterfall



Resource Triangle: Agile

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration



Agile processes

I Agile software development methods
I Extreme Programming
I Scrum
I Lean Software Development
I Kanban

I Common characteristic
I Short iterations: Each iteration produces a software

increment
= Small batch sizes

Ideal batch size: one (single piece flow)
I Driven by user stories/Backlog items/smallest marketable

feature/. . .



eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.



Sit-together

Kent Beck, Extreme Programming 2nd ed.



Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia



Burn Down Charts

Wikipedia



Lean Software Development

I Lean Production:
I Reduce the amount of waste
I Generate flow

I Waste: resources used with does not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .



Cycle time

Cycle time
Time it takes to go throuh the process one time

cycle time =
number of features

feature implemantion rate

Batch size = number of features in an iteration



Cycle time: Waterfall

I Software: 250 features, 50 weeks,
feature implementation rate = 5 features/week

cycle time =
number of features

feature implemantion rate

I Waterfall: cycle time = 250 / 5 = 50 weeks
→ 1 cycle
I Question: How to reduce the cycle time?

→ Get feedback from the process



Reducing the cycle time

I Software: 250 features, 50 weeks,
feature implementation rate = 5 features/week

cycle time =
number of features

feature implemantion rate

I Agile: cycle time = 1 / 5 = 8 hours
→ 250 cycles
→ Process improvement: incease in features / week



Generating flow using Pull and Kanban

WIP = Work in Progress Limit

1
324

A T IWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

8

7

9

10

5

6

Blah
Composite

Leaf Assembly4 2 3

3 3 3 3



Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes: e.g. Scrum + Kanban =

Scrumban

Figure from David Anderson www.agilemanagement.net

www.agilemanagement.net


Online Tool

I www.targetprocess.com: Electronic Kanban board
useful for your project

www.targetprocess.com


Contents

Software Development Process (cont.)

From Requirements to Design: CRC Cards

Version control



From Requirements to Design

Design process

1 Glossary/architecture: possible classes, attributes, and
operations

2 Take one use case scenario / user story
a) Devise a test for the scenario
b) Realize that scenario by adding new classes, attributes,

associations, and operations so that you design can
execute that scenario

c) implement

3 Repeat step 2 with the other use case scenarios / user
stories



Introduction CRC Cards

I Class Responsibility Collaboration
I Developed in the 80’s
I Used to

I Analyse a problem domain
I Discover object-oriented design
I Teach object-oriented design

I Object-oriented design:
I Objects have state and behaviour
I Objects delegate responsibilities
I ”Think objects”



CRC Card Template

A larger example
I http://c2.com/doc/crc/draw.html

http://c2.com/doc/crc/draw.html


Process

I Basic: Simulate the execution of use case scenarios / user
stories

I Steps
1. Brainstorm classes/objects/components
2. Assign classes/objects/components to persons (group up to

6 people)
4. Execute the scenarios one by one

a) add new classes/objects/components as needed
b) add new responsibilities
c) delegate to other classes / persons



Library Example: Use Case Diagram

User

LibrarySystem

check out book

return book

search for book



Library Example: Detailed Use Case Check Out Book

I Name: Check Out Book
I Description: The user checks out a book from the library
I Actor: User
I Main scenario:

1 A user presents a book for check-out at the check-out
counter

2 The system registers the loan
I Alternative scenarios:

I The user already has 5 books borrowed
2a The system denies the loan

I The user has one overdue book
2b The system denies the loan



Example II

I Set of initial CRC cards: Librarien, Borrower, Book
I Use case Check out book main scenario (user story)

I ”What happens when Barbara Stewart, who has no
accrued fines and one outstanding book, not overdue,
checks out a book entitled Effective C++ Strategies+?”



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: CRC cards



Library Example: All CRC cards



Process: Next Steps

I Review the result
I Group cards
I Check cards
I Refactor

I Transfer the result
I Implement the design test-driven
I UML model



Example: Class Diagram (so far)

0..1 *

Borrower

canBorrow

Book

isOverdue
checkOut(b:Borrower)
calculateDueDate

Librarien

checkOutBook(b:Book)

Date

compare(d:Date)

* *

0..1 dueDate

I Process: Agile software development
I Take a user story (according to plan)
I Create an automatic acceptance test
I Design the behaviour of the user story using CRC cards
I Implement the the design test-driven



Contents

Software Development Process (cont.)

From Requirements to Design: CRC Cards

Version control



What is version control

Version Control
I Stores and mangages versions documents (e.g. .java files)
I Manages concurrent work on documents
I Manages different software release versions
I Various systems: CVS, svn, git, . . .



CVS

I Concurrent Versions System
I One central repository
I Command line tools, IDE support
I Files have a tree of versions: branching
I Release: File versions having same tag
I Versions: diffs (differences) to previous versions



Creating a repository

http://repos.gbar.dtu.dk

http://repos.gbar.dtu.dk


Creating a repository



Creating a repository



Creating a repository



Create a project and share it

I Menu: Team→share project and create a new
repository location



Checking out a project
I CVS Repository Exploring perspective



Package Explorer Team Menu Project



Steps in Developing a Program using CVS

1 Create Repository
2 Create a project and share the project
3 For all the programming tasks in an iteration

3.1 Run tests; Update project; run tests; fix tests
3.2 Work on the implementation so that all tests run
3.3 Commit your changes

3.3.1 Update the project; run tests
3.3.2 Fix all compile time errors and all broken tests;
3.3.3 Commit your changes

4 Tag you files for major project milestones
Important : Commit only if all tests pass



Committing changes

I Fails if someone else committed the file before
I If fail → update, merge, commit



Update a project

I Gets newest version of the file
I If conflicts

→ text files are merged
→ other files are overwritten
I based on lines
I successful merge
I unsuccessful merge



Unsuccessful merge

I Same lines have been changed
public Address() {

// TODO Auto-generated constructor stub
}

<<<<<<< Address.java
public String getStrasse() { // Local change

=======
public String getGade() { // Committed change

>>>>>>> 1.2
return street;

}



Package Explorer Compare With Menu



Compare result: Compare with latest from HEAD


	Software Development Process (cont.)
	From Requirements to Design: CRC Cards
	Version control

