
Software Engineering I (02161)
Week 7

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning

Exam Project Planning

Layered Architecture: Persistency Layer for the library
application

Persistency Layer

Presentation Layer

Application/Domain Layer

LibraryUI

LibraryApp
Medium

User
Book Cd

PersistentObject

PersistencyLayer

Address

I Data stored in two files users.txt
& media.txt; address has no file

I A book
dtu.library.app.Book
b01
some book author
some book title
Mar 13, 2011
<empty line>

I A user
dtu.library.app.User
cpr-number
Some Name
a@b.dk
Kongevejen
2120
Hellerup
b01
c01
<empty line>

Persistency Layer

LibraryApp

PersistencyLayer
...
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

 1

User
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

PersistentObject

storeOn(out:PrintWriter)
getKey():String

key:String
0..1cache_users

key:String
0..1cache_media

Medium
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

{
 return getSignature();
}

{
 return getCprNumber();
}

*
borrowedMedia

Layered Architecture: Persistency Layer for the library
application

PersistencyLayer
cache_users
cahce_medium
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

I CRUD: Create, Read, Update, Delete

I clearDatabase

I removes the text files to
create an empty
database

I Used with tests in
@Before methods:
Independent tests

Issues: Object identity

PersistencyLayer pl = new PersistencyLayer();
User user1 = pl.readUser("12345");
User user2 = pl.readUser("12345");
assertNotSame(user1,user2) // ?
assertSame(user1,user2) // ?

Solution: Qualified Associations / Maps

Map<String,PersitentObject> cacheUsers =
new HashMap()<String,PersistentObject>

Map<String,PersitentObject> cacheMedia =
new HashMap()<String,PersistentObject>

UML Notation

PersistencyLayer
...
...

PersistentObject

storeOn(out:PrintWriter)
getKey():String

key:String
0..1cache_users

key:String
0..1cache_media

public User readUser(String key) {
if (cacheUsers.contains(key)) { return cacheUsers.get(key); }
User user = readObjectFromFile(String key);
if (user != null) { cacheUsers.put(key,user); }
return user;

}

Map<K,V> Interface

I Dictionary (table): keys of type K , values of type V
I Implementation class: HashMap<K,V>
I Operations

I m.put(aK,aV)
I m.get(aK)
I m.containsKey(aK)

I Properties
m.put(aK,aV);
assertTrue(m.containsKey(aK));
assertSame(aV,m.get(aK));

assertFalse(m.containsKey(aK));
assertNull(m.get(aK));

Exercise tasks:

1) Implement the persistency layer (tests provided)
2) Intergrate persistentcy layer in the library application (tests

have to be written)
I Additional information
http://www2.imm.dtu.dk/courses/02161/2013/
slides/pe_persistency.pdf

http://www2.imm.dtu.dk/courses/02161/2013/slides/pe_persistency.pdf
http://www2.imm.dtu.dk/courses/02161/2013/slides/pe_persistency.pdf

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning

Exam Project Planning

Software Development Challenges

I Challenges of Software Development
I On time
I In budget
I No defects
I Customer satisfaction

Software Development Process

I Activities in Software Development
I Understand and document what the customer wants:

Requirements Engineering
I How to build the software: Design
I Build the software: Implementation
I Validate: Testing, Verification, Evaluation

→ Set of techniques: Use cases, CRC cards, refactoring,
test-driven development, . . .

I How to apply the techniques:
→ Different software development processes: Waterfall,

Iterative processes, agile, lean, . . .

Waterfall process

Delays in waterfall processes

D I TA

Time

Features

Release date

Iterative Processes: E.g. (Rational) Unified Process

Resource Triangle

I Can only fix two of them at the same time

Agile processes and Lean Software Development

Functionality

Time
AD IT

AD IT
R

AD IT
R

F 1

F 2

F 3

F 4

F 5

F 6

F 7

1. Iteration

Agile processes and Lean Software Development

1. Iteration

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

F 1

F 2

F 3

F 8

F 4

F 5

F 6

Agile processes and Lean Software Development

Functionality

Time
AD IT

AD IT
R

AD IT
R

AD IT

R

AD IT

R

AD IT

R

F 1

F 2

F 3a

F 8

F 4

F 5

F 6

R
AD IT

1. Iteration

Agile Processes and Lean Software Development

I Agile processes: eXtreme Programming (XP), Scrum,
Feature Driven Development (FDD), Lean Software
Development

I Common characteristics
I Short iterations
I Focus on marketable features (Lean/Kanban) / user stories

(XP) / product backlog items (Scrum)
I New, extreme practices
I Applying values and principles from Lean Production

User stories

I Introduced with Extreme Programming
I Focus on features

I ”As a customer, I want to book and plan a single flight from
Copenhagen to Paris”.

I Recommended, but not exclusive: ”As a <role>, I want
<goal/desire> so that <benefit>”

I Difference to Use Cases: User stories can be defined for
non-functional requirements

I ”The search for a flight from Copenhagen to Paris shall take
less than 5 seconds”

I Documented by user story cards, i.e. index cards

Example of a User story card

Kent Beck, Extreme Programming, 1st ed.

I User story card: A contract between the customer and the
devloper to talk about the user story

Example of a User story card

Kent Beck, Extreme Programming 2nd ed.

User stories and requirements engineering

I Requirements engineering is done in parallel with the
development of the system

I Requirements engineering
I Epics

→ coarse level user stories
I User story cards

→ not too much details
I User stories are assigned to iterations
→ priority for the customer

I In an iteration
I refine user stories
→ provide detail

→ Compare with waterfall
I Requirement phase: as detailed as possible

Comparision: User Stories / Use Cases

Use Story
I one concrete

scenario/feature
I concrete data

I requirements of relevance
for the user

I functiional: e.g. use
case scenario

I non-functional

Use Cases
I several abstract scenarios

with one goal
I only functional

requirements

eXtreme Programming (XP)

Kent Beck, Extreme Programming 2nd ed.

eXtreme Programming practices

Kent Beck, eXtreme Programming, 2nd edition

Sit-together

Kent Beck, Extreme Programming 2nd ed.

Visual wall

Kent Beck, Extreme Programming 2nd ed.

Scrum

Working increment
of the software

Sprint Backlog SprintProduct Backlog

30 days

24 h

file:///Users/huba/Desktop/Scrum_process.svg

1 of 1 /18.3.13 24:16

Wikipedia

Burn Down Charts

Wikipedia

Lean Software Development

I Lean Production:
I Reduce the amount of waste
I Generate flow

I Waste: resources used with does not produce value for the
customer

I time needed to fix bugs
I time to change the system because it does not fit the

customers requirements
I time waiting for approval
I . . .

Cycle time
I Increase feedback: Reduce time it takes to go through the

process: cycle time

Cycle time

cycle time =
number of features

feature implemantion rate

Software: 250 features, 50 weeks, feature implementation rate
= 5 features/week

I Waterfall: cycle time = 250 / 5 = 50 weeks
→ 1 cycle

Reducing the cycle time
I Agile: cycle time = 1 / 5 = 8 hours
→ 250 cycles
→ Process improvement: incease in features / week

Cycle time
I Increase feedback: Reduce time it takes to go through the

process: cycle time

Cycle time

cycle time =
number of features

feature implemantion rate

Software: 250 features, 50 weeks, feature implementation rate
= 5 features/week

I Waterfall: cycle time = 250 / 5 = 50 weeks
→ 1 cycle

Reducing the cycle time
I Agile: cycle time = 1 / 5 = 8 hours
→ 250 cycles
→ Process improvement: incease in features / week

Generating flow using Pull and Kanban

A I TWork Item DoneD
Queue WIP Queue QueueQueue WIP WIP WIP

Login1
Composite

Leaf Assembly3Blah5

1
3245

A T I DComposite

Leaf Assembly1

1

1

Login3

3

Composite

Leaf Assembly2
Login4

Login2

Visual wall / Kanban

Software Engineering: Flow through Pull with Kanban

I Process controlling: local rules
I Load balancing: Kanban cards and Work in Progress

(WIP) limits
I Integration in other processes: e.g. Scrum + Kanban =

Scrumban
I www.targetprocess.com: Electronic kanban board

usefull for your project
Figure from David Anderson www.agilemanagement.net

www.targetprocess.com
www.agilemanagement.net

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning
Introduction
Classical Development
Project estimation techniques
Agile Planning

Exam Project Planning

Project Planning

I Project plan
I Defines:

I How work is done
I Estimate

I Duration of work
I Needed resources
→ Price

I Project planning
I Proposal stage

→ Price
→ Time to finish

I Project start-up
I During the project

I Progress (tracking)
I Adapt to changes

Process planning and executing

Processes

I Waterfall

I milestones/deliverables: system
specification, design
specification, . . .

I Typical tasks: Work focused on
system components

I Iterative Development (e.g. RUP)

I Milestones/deliverables: Each
phase: go ahead to next phase

I Typical tasks: Work focused on
system components

Schedule Representation: Gantt Chart / Bar chart

Project estimation techniques

I Experienced based
I XP: story points
I Comparision with similar tasks

I Algorithmic based
I e.g. COCOMO, COCOMO II, . . .

Algorithmic cost modeling: COCOMO

I Constructive Cost Model (COCOMO) by Bary Boehm et
al., 1981

I based on empirical studies
I Effort: in person months: PM = a ∗ LOCb

I Lines of code (LOC)
I 2.4 ≤ a ≤ 3.6: type of software
I 1 ≤ b ≤ 1.5: cost drivers: platform difficulty, team

experience, . . .
I Project duration: TDEV = 3 ∗ PM0.33+0.2∗(b−1.01)

I Staffing: STAFF = PM/TDEV

Planning Agile Projects

I fixed general structure
→ quarterly cycle / weekly cycle practices in XP

...

1w−4w 1w−4w (but fixed)

Release 1

3m−6m

...

Iteration 1Pl. Pl. Iteration n
Planning

Release
Pl.

Release m

...Iteration 1 Pl. Iteration n
Planning

Release

I Releases (quarterly cycle)
I make (business) sense
I user stories / themes

I Iterations with releasees (weekly cycle)
I user stories

I time boxing
I fixed: release dates and iterations
I adjustable: scope

Planning game

I Customer defines:
I user stories
I priorities

I Developer define:
I costs, risks
I suggest user stories

I Customer decides: is the user story worth its costs?
→ split a user story
→ change a user story

Project estimation and monitoring

I Estimation: two possibilities
1) Estimate ideal time (e.g. person days / week) + load factor
2) Estimate relative to other user stories: story points

I Monitoring
ad 1) New load factor : total iteration time / user story time

finished
ad 2) velocity : Number of points per iteration

→ What can be done in the next iteration (yesterdays
weather)

I Important: If in trouble focus on few stories and finish them

Contents

Layered Architecture: Persistence Layer

Software Development Process

Project planning

Exam Project Planning

Process to be used for the exam project

1. Create a use case diagram
2. Select the most important use case scenarios and define

user stories for them
3. Determine a basic architecture
5. Create a project plan
5. Repeat:

I 2 people take a user story/task due (highest priority first)
a) detail use case scenario
b) acceptance tests
c) (contribution to systematic tests)
d) CRC cards for the design
e) report any design issues in the report
f) test-driven implementation of the scenario
g) (create sequence diagram for the scenario)

I Meet often to coordinate the design
I Don’t forget to update your plan as you learn

6. Collect the material you have written and finish the report

Example Plan

I Remark: report structure 6= project structure
I Report structure: waterfall (by technique)
I Project structure: agile (by user story)

Project plan for a MUD game

number of persons hours a week per person hours a week no. of weeks

4 8 32 5 160

User Story/Tasks Ideal man hour Total hours in week Total hours

Week 1 Creating the base structure of the report 1 2 2 2

Player starts game 2 4 6 6

Player looks into a room 2 4 10 10

Player moves to adjacent room 2 4 14 14

Writing about the use cases 2 4 18 18

Player advances to next level 2 4 22 22

Player finishes game 2 4 26 26

Player takes up object 2 4 30 30

Syst. tests for the use cases in this iteration 2 4 34 34

Week 2 Players lays down object 2 4 6 38

Player registers successful for the game 2 4 10 42

Player registers, but name is already used 2 4 14 46

Writing the introduction 2 4 18 50

Writing about the design 2 4 22 54

Syst. tests for the use cases in this iteration 2 4 26 58

… … … … …

hours for the whole
project

man hour with
load factor

	Layered Architecture: Persistence Layer
	Software Development Process
	Project planning
	Introduction
	Classical Development
	Project estimation techniques
	Agile Planning

	Exam Project Planning

