Software Engineering | (02161)
Week 7

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

=
—
=

i

Contents

Layered Architecture: Persistence Layer
Software Development Process
Project planning

Exam Project Planning

Layered Architecture: Persistency Layer for the library
application

N

—

7
Presentation Layer) El

LibraryUl

< Appllcallon/DDma@’m‘ El

[Persistency Layay g]

PersistencyLayer
e

>

>

Data stored in two files users.txt
& media.txt;address has no file

A book

dtu.library. app Book é Cl“”
b0l — nehupe

some book author [22X s
some book title & Hitle

Mar 13, 2011 é— bovron date

<empty line> OSe'nml'\ub \ecovdg
A user

dtu.library.app.User
cpr—number

Some Name

a@b.dk

Kongevejen

2120

Hellerup

b0l

c01

<empty line>

Persistency Layer

CRup

LibraryApp

< Ee encha¥er)

clearDatabase
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>

key:String cache_Users -
key:String cache_media 7

{
return EethrNumber N
}

ersistentObject

loreon(out

&)

getKey():String
—

7

A N

User

getKey():String

storeOn(out:Printwriter)

readFromReader(r:Buff.Read.
ol:PersistencylLayer)

retu

orrowedMedia

Medium

_getKey():String
Storeon(out. PTMtWriter)
readFromReader(r:Buff.Read.

ol:PersistencylLayer)

rn getSignature();
|

Layered Architecture: Persistency Layer for the library

application

PersistencyLayer

cache_users

Mum

fTam(m:Medium)
eateUser(u:User)
adMedium(sig:String):Medium
adUser(cpr:String):User
pdateMedium(m:Medium)
pdateUser(m:User)
leteMedium(sig:String)
leteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>

US‘/&)I\‘,\

» CRUD: Create, Read, Update, Delete
» clearDatabase

» removes the text files to
create an empty
database

» Used with tests in
@Before methods:
Tndependent tests

e

Issues: Object identity

Persistencylayer pl = new Persistencylayer();
User userl = pl.readUser ("12345");
User user2 = pl.readUser ("12345");

4 s serENetESam <US rl, o) r’)> // ?

2) assertSame (userl, user?) // 2

Solution: Qualified Associations / Maps

’V\ ‘-u-.l»dt.o_
Al
t> c eUsers =
ew(HashMap () <String,PersistentObject>
t> cac ia =

ew HashMap () <String,PersistentObject>

Map<String,PersitentObje

Map<String,PersitentObje

PersistencyLayer | PersistentObject
key:String | cache_users ;1| storeOn(out:PrintWriter)
—| getKey():String
e
key:String cache_media o 1

Pm—

public User readUser (String key) {

if (cachelUsers contains (kev)) { return cacheUsers.get (key);
User user = readObijectFromFile (String key);
if (user != null) { cacheUsers.put (key,user); }

return user;

}

Map<K.,V> Interface
———

v

v

v

v

Y
Test 2 |

1224
USeT | ar
Dictionary (table): keys of type K, values of type V

Implementation class: HashMap<K,V>
Operations T
(aK, av) = Course A‘é +Dalachruchurs

> m.put

> m.ﬁ:’(aK)

» m.containsKey (aK)
Properties
m.put (aK, av);

—

assertTrue (m.contaj

assertSame (aV,m.get (akK)) ;
~—

assertFalse (m.containsKey (aK)) ;
assertNull (m.get (akK));

Exercise tasks:

Advorudd evevafe

1) Implement the persistency layer (tests provided)
2) Intergrate persistentcy layer in the library application (tests
have to be written)

» Additional information
http://www2.imm.dtu.dk/courses/02161/2013/

slides/pe_persistency.pdf

http://www2.imm.dtu.dk/courses/02161/2013/slides/pe_persistency.pdf
http://www2.imm.dtu.dk/courses/02161/2013/slides/pe_persistency.pdf

Contents

Layered Architecture: Persistence Layer
Software Development Process
Project planning

Exam Project Planning

Software Development Challenges

» Challenges of Software Development
on time ./ /
In budget

No defects [/ /
Customer satisfaction

vV vy VvVvYyYy

Software Development Process

» Activities in Software Development

» Understand and document what the customer wants:
Requirements Engineering

» How to build the software: Design

» Build the software: Implementation
» Validate: Testing, Verification, Evaluation

— 'Set of techniques: Use cases, CRC cards, refactoring,
test-driven development, . ..

» How to apply the techniques: v whidh zvdec ?

— Different software development processe

lterative processes, agile, lean, ...

Waterfall process

Aw&'l. CJ(

fOVC Ut‘l(‘

f:-?

"/3 .(vuj!'x‘tz looP 15 es¢ahal

Implementation

Verification 7

Delays in waterfall processes

Features

Release date Time

lterative Processes: E.g. (Rational) Unified Process
—

< Fﬂalses)

Disciplines |Inmpﬁon|| Elaboration || _ Construction || Transitinn|

Business Mudelinq, H i
Requirements i
Analysis & Design P e e
Implementation v b —

Test __L_.-—..'F.-“.-——
Deployment v i H A

Configuration

& Change Mgmt i ——
Project Management I R —_ s
g
Environment j -

Const || Const :nnst||1'ran||1\-an|
| e |[=mab o] [man o2 ont | S [[0 | 3

A2 Itefatibns €

V—
Mile stone

Resource Triangle

Gualify

mvfce: —_— Funct l'vno.lilj_

VovaSle
Mo 2e e Phbv sk
kn'shosF lphbv"‘\i_x -F"vc\}

» Can only fix two of them at the same time

Agile processes and Lean Software Development

1 Functionality
F7 i
F6
F5
F4

F3 Dl

F2 A|D|T|y

~|
A

1. Iteréti on Time

Uger S{vv]

v

Agile processes and Lean Software Development

Fé
Fs5
Fa

@
F3 |
F2

‘t Functionality

AD[T]I

AD[T]I

AD[T]I

F1

1

Iteration

Time

v

Agile processes and Lean Software Development

Functionality

F6 D

Fs Cut shock 1aveleac d M«AK ch o’eluas A|D|T||
T — [Af]l

Fe | AID[T]I R
D Al R Al R

F2 AD[T]1 [R =

F1 A|D|T|I

1. lteration Time

v

Agile Processes and Lean Software Development

®$ e wa»-'/s#o,opé

2o
» Agile processes: eXtreme Programming (Xﬁ), Scrum,
Feature Driven Development (FDD), Lean Software
Development

» Common characteristics

» Short iteration
» Focus on marketable features (Lean/Kanban) / user stories

(XP) / product backlog items (Scrum)
» New, extreme practices

» Applying values and principles from Lean Production

User stories

v

Introduced with Extreme Programming
Focus on features
» "As a customer, | want to book and plan a single flight from
Copenhagen to Paris”.
» Recommended, but not exclusive: "As a <role>, | want
<goal/desire> so that <benefit>"
Difference to Use Cases: User stories can be defined for
non-functional requirements
» "The search for a flight from Copenhagen to Paris shall take
less than 5 seconds”

Documented by user story cards, i.e. index cards

v

v

v

Example of a User story card

Blw Deyolopoment \coth
FUNC. TEST

C Stqry and Task Card

TYPEOF ACTIVITY: NEW: X_FIX: ___ ENHANCE:

(oare: 3114 4;2
smnvmmmzn;é zl é;) PRIORITY: USER: TECH:

PRIOR REFERENCE: W g

TASK DESCRIPTION:

SPLIT COLIX:When the C0LRA rate ¢ T“'ﬁ Ladaiddle of Hhe Blw Pay Reviod wie
ol the OLDCOLA yate @il fle InNn

will wand 1un {he 52 meek of The ey
1JL’“¢“"" mf€ eevod ol la NEW Shoal gf becuy lagtomation i/ bavc{
NOTES: : n 4y

Fom Britin
\Y‘ weun |l vnn & mi?uama proq

fnaf‘ Tt A (’)a\i DY \'Iw ¢ the 0 0LH 4’“’2"‘0

weel L“ »T The plant turrantly redvang memgda{ﬂ Lic the 2% ek ewlisivel;
0thstiwe tan 0 fe ((»vﬂ i ,,Lmll Boi s ity Liw/fo//;/uy w IR COLA

TASK TRACKING: 01055 [y Ad festwent Ceeate HM Bouwndary giud Plaee i DEEwt Cypess AOLA
“To Do £ Comments T

Date Smms

Kent Beck, Extreme Programming, 1st ed.

> User story card: A@ontracDbetween the customer and the
devloper to talk about the user story

Example of a User story card

Eshmank

SAUZ WITH (OMPLSSSIoN | |

T CORRENTLY THE ComedsSSionN
OPTIONS ARE IN A DIALOG
SUORSSRUEAT 1D THS 3AVE
DIALOG. MAKLS THem PALT
OF THE 2AVS DIALOG |TSELE .

Kent Beck, Extreme Programming 2nd ed.

User stories and requirements engineering

» Requirements engineering is done in parallel with the
development of the system

> Requiriients engineering

— coarse level user stories
= —————————

» User story cards

— not too much details
» User stories are assigned to iterations
— priority for the customer
» In an iteration

»(efine user storie

— provide detail
e
— Compare with waterfall
» Requirement phase: as detailed as possible
_—

=~ QccapFomea fests: -F)rma(Aaser. 4-
Uge SJ'OI'S

Comparision: User Stories / Use Cases

Use Story
» one concrete
e —
scenario/feature Use Cases _
> _concrete data » several abstract scenarios
» requirements of relevance with one
for the user » only functional
—_—:
» functiional: e.g. use requirements

€ scenario

> non—functigg_a

eXtreme Programming (XP)

ZHTRENL PROGRAMNING EXPLAINED! ZMBRACE ChANGE.

7 g&‘:

o 2
wa.zww

Kent Beck, Extreme Programming 2nd ed.

eXtreme Programming practices

Kent Beck, eXtreme Programming, 2nd edition

Sit-together

VisSual tell

Visual wall

iy fortamy g e

(W]

;EI - I o Oh
|| = oy B

To B4 FSTINTED Fumt.l
Lm a @ | [

Lt

Kent Beck, Extreme Programming 2nd ed.

Scrum

24h

30 days

=

Product Backlog Sprint Backlog Sprint Working increment

of the software

Wikipedia

Burn Down Charts

Sum of Task Estimates (days)
e

Project XYZ lteration 1 Burn Down

10
tteration Timeline (days)

End

M ldeal Tasks Remaining
W 2ctual Tasks Remaining

Wikipedia

Lean Software Development

» Lean Production:

» Reduce the amount of waste
» Generate flow

» Waste: resources used with does not produce value for the
customer
» time needed to fix bugs
» time to change the system because it does not fit the
customers requirements

» time waiting for approval
-

Cycle time

» Increase feedback: Reduce time it takes to go through the
process: cycle time

Cycle time

number _of _features
feature_implemantion_rate

cycle_time =

Software: 250 features, 50 weeks, feature_implementation_rate
= 5 features/week

» Waterfall: cycle_time = 250 / 5 = 50 weeks
— 1 cycle

Cycle time

» Increase feedback: Reduce time it takes to go through the
process: cycle time

Cycle time

number _of _features
feature_implemantion_rate

cycle_time =

Software: 250 features, 50 weeks, feature_implementation_rate
= 5 features/week

» Waterfall: cycle_time = 250/ 5 = 50 weeks
— 1 cycle
Reducing the cycle time
» Agile: cycle_time =1/5 =8 hours
— 250 cycles
— Process improvement: incease in features / week

Generating flow using Pull and Kanban

Work Item | gueie ™ wip | Quene wip Queue wip | Queue wip Done

=3

» Al EE =40 56
[% i [3

TERER OO0

Visual wall / Kanban

o
g O 22
' 72

[T ERR

Lt

w@
% o

Software Engineering: Flow through Pull with Kanban

L

» Process controlling: local rules

» Load balancing: Kanban cards and Work in Progress
(WIP) limits

» Integration in other processes: e.g. Scrum + Kanban =
Scrumban

» www.targetprocess.com: Electronic kanban board
usefull for your project

www.targetprocess.com
www.agilemanagement.net

Contents

Layered Architecture: Persistence Layer
Software Development Process

Project planning
Introduction
Classical Development
Project estimation techniques
Agile Planning

Exam Project Planning

Project Planning

» Project plan
» Defines:
» How work is done
» Estimate
» Duration of work
» Needed resources
— Price
» Project planning
» Proposal stage
— Price
— Time to finish
» Project start-up
» During the project
» Progress (tracking)
» Adapt to changes

Process planning and executing

Identify
Constraints

Identify
Risks

Define
Milestones
and
Deliverables,

«system»

. [unfinished]
Project Planner

[project

Do the Work

Define Project
Schedule

Monitor Progress
Against Plan

[minor problems and slippages]

finished]
~@

[no problems]

[serious
problems]

Initiate Risk
Mitigation Actions

Replan
Project

)

Processes

» Waterfall

> milestones/deliverables: system
specification, design
specification, ...

> Typical tasks: Work focused on
system components

> lterative Development (e.g. RUP)

Phases
[nception|| [e [[renstion]
Business Modeling
e | i i—
Analysis & Design T ea——
s B |
Test —
Deployment ‘
Configuration
& Change Mgmt
Project —— e “
O e GG e bl
Iterations

» Milestones/deliverables: Each
phase: go ahead to next phase

> Typical tasks: Work focused on
system components

Schedule Representation: Gantt Chart / Bar chart

Week 0 1 2 3 4 5 6 7 8 9 10 1
¢ Start \
m
T |
T2 i
P (M1/T1)
AE]
I
i) (M3/T2 & T4)
T5
[}
@ (Ma/T1&T2)
T6
T7
1
§ (M2/14) l l
T8
T
4 (M5/T3 &7T6)
T9 ’
¢ (M6/T7 &T8)
T10
¢ M7/T9)
T
@ (M8/T10&TI1
T2

Finish 4

Project estimation techniques

» Experienced based

» XP: story points

» Comparision with similar tasks
» Algorithmic based

» e.g. COCOMO, COCOMOII, ...

Algorithmic cost modeling: COCOMO

v

Constructive Cost Model (COCOMO) by Bary Boehm et
al., 1981

based on empirical studies

Effort: in person months: PM = ax LOC?
» Lines of code (LOC)
» 2.4 < a < 3.6: type of software
» 1 < b < 1.5: cost drivers: platform difficulty, team
experience, . ..
Project duration: TDEV = 3 x PM0-33+0.2+(b—1.01)

Staffing: STAFF = PM/TDEV

v

v

v

v

Planning Agile Projects

» fixed general structure

— quarterly cycle / weekly cycle practices in XP

Toees

Release 1| Iteration 1 pi1/ Iteration n

Planning

o]

Release

Planning p1/ Iteration 1

~ Pl

Iteration n

Iw—4w 1w—4w (but fixed)
e

C Release | D = 4 FO"""‘

Release m

3m-6m

» Releases (quarterly cycle)

» make (business) sense
» user stories /| themes

» lterations with releasees (weekly cycle)

Cosersioiess —> Y ofeck plav

» time boxing

» fixed: release dates and iterations

» adjusfable: scope
_—

— jesowra ‘(‘V\;:us le

Planning game

» Customer defines:
» user stories
» priorities
» Developer define:
» costs, risks
» suggest user stories
» Customer decides: is the user story worth its costs?

z= - =
— split a user story
— change a user story

Project estimation and monitoring

» Estimation: two possibilities
1) Estimate ideal time (e.g. person days / week) x load_factor
2) Estimate relative to other user stories: storg __Q_oinz‘s

» Monitoring
ad 1) NewToad factory total.iteration.time / user_story_time
== —_—
> nished S -

ad 2) velocity: Number of points per iteration

— What can be done in the next iteration (yesterdays
weather

» Important: If in trouble focus on few stories and finish them

Contents

Layered Architecture: Persistence Layer
Software Development Process
Project planning

Exam Project Planning

Process to be used for the exam project

1. Create a use case diagram

2. Select theymost important use case scenarios pnd define
user stories for them

3. Determine a basic architecture

5. Create gproject plam

5. Repeat:

» 2 people take a user story/task due (highest priority first)
a) detail use case scenario
b) acceptance tests
¢) (contribution to systematic tests)
d) CRC cards for the design
e)
f)

report any design issues in the report
test-driven implementation of the scenario
g) (create sequence diagram for the scenario)

» Meet often to coordinate the design
» Don’t forget to update your plan as you learn

6. Collect the material you have written and finish the report

Example Plan

» Remark: report structure

» Report structure: waterfall (by technique)
» Project structure: agile (by user story)

number of persons

Week 1

Wer shower

Week 2

4
—_—

Project plan

hours a week per person
@

User Story/Tasks

roject structure

a MUD game

hours a week

32

no. of weeks

hours for the whole

project

5

man hour with

Ideal man hou; oad factor
Creating the base structure of the report 1

Player starts gamg
Player looks into a room

Player moves to adjacent room

Writing about the use cases

Player advances to next level

Player finishes game

Player takes up object

Syst. tests for the use cases in this iteration

’S down objec
Player registers successful for the game
‘PtayerregrSIers, but name s aneady used
Writing the introduction
Writing about the design
Syst. tests for the use cases in this iteration

MNNRNNMNNNNONNNNNN

(N

ABRABBADDDDDADDNSD

?ep(cw o‘(lfhf Add new S‘OV\'M)- Cl/lﬁmde. Stornec

160

2

6
10
14
18
22
26
30
34

6
10
14
18
22
26

otal hours in week Total hours
-2

6
10
14
18
22
26
30
34
38
42
46
50
54
58

	Layered Architecture: Persistence Layer
	Software Development Process
	Project planning
	Introduction
	Classical Development
	Project estimation techniques
	Agile Planning

	Exam Project Planning

