
Software Engineering I (02161)
Week 4

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013



Contents

Systematic tests

Code coverage

Project



Systematic testing

I Tests are expensive
I Impractical to test all input values
I Not too few because one could miss some defects
→ Partition based tests



Partition based tests

I Tests test expected
behaviour

I SUT (System under test)



Partition based tests: Black box

I Expected behaviour:
isEven(n)

I SUT implementation of
isEven(n)



Partition based tests: White Box

I Expected behaviour: isEven(n)
I SUT implementation of isEven(n)

public boolean isEven(int n) {
if (n % 2 == 0) {

return true;
} else {

return false;
}

}



Partition based tests: White Box

I Expected behaviour: isEven(n)
I SUT implementation of isEven(n)

public boolean isEven(int n) {
if (n == 101) return true;
if (n % 2 == 0) {

return true;
} else {

return false;
}

}



How to get to the partitions

1. white box test / structural test
2. black box test / functional test



White Box tests

I Find the minimum and the maximum of a list of integers



Example of a white box test (II): Test cases



JUnit Tests

public class WhiteBoxTest {
MinMax sut = new MinMax();

@Test(expected = Error.class)
public void testInputDataSetA() {
int[] ar = {};
sut.minmax(ar);

}

@Test
public void testInputDataSetB() {
int[] ar = {17};
sut.minmax(ar);
assertEquals(17,sut.getMin());
assertEquals(17,sut.getMax());

}

@Test
public void testInputDataSetC() {
int[] ar = {27, 29};
sut.minmax(ar);
assertEquals(27,sut.getMin());
assertEquals(29,sut.getMax());

}



JUnit Tests (cont.)

@Test
public void testInputDataSetD() {
int[] ar = {39, 37};
sut.minmax(ar);
assertEquals(37,sut.getMin());
assertEquals(39,sut.getMax());

}

@Test
public void testInputDataSetE() {
int[] ar = {49, 47, 48};
sut.minmax(ar);
assertEquals(47,sut.getMin());
assertEquals(49,sut.getMax());

}

}



Example of a black box test (I): min, max computation

Problem: Find the minimum and the maximum of a list of
integers

I Definition of the input
partitions

I Definition of the test values
and expected results



Example of a black box test (I): min, max computation

Problem: Find the minimum and the maximum of a list of
integers

I Definition of the input
partitions

I Definition of the test values
and expected results



White box vs. Black box testing

I White box test
I finds defects in the implementation
I can’t find problems with the functionality

I Black box test
I finds problems with the functionality
I can’t find defects in the implementation



TDD vs. White box and Black box testing

I TDD: Black box + white box testing
I TDD starts with tests for the functionality
I Any production codes needs to have a failing test first



Summary

Test plan: Two tables
I Table for the input partitions
I Table for the test data (input / expected output)



Example Vending Machine

I Actions
I Input coins
I Press button for

bananas or apples
I Press cancel

I Displays
I current amount of

money input
I Effects

I Return money
I Dispense banana or

apple



Use Case: Buy Fruit

name: Buy fruit
description: Entering coins and buying a fruit
actor: user
main scenario:

1. Input coins until the price for the fruit to be selected is
reached

2. Select a fruit
3. Vending machine dispenses fruit

alternative scenarios:
a1. User inputs more coins than necessary
a2. select a fruit
a3. Vending machine dispenses fruit
a4. Vending machine returns excessive coins



Use Case: Buy Fruit (cont.)

alternative scenarios (cont.)
b1 User inputs less coins than necessary
b2 user selects a fruit
b3 No fruit is dispensed
b4 User adds the missing coins
b5 Fruit is dispensed
c1 User selects fruit
c2 User adds sufficient or more coins
c3 vending machine dispenses fruit and rest money
d1 user enters coins
d2 user selects cancel
d3 money gets returned



Use Case: Buy Fruit (cont.)

alternative scenarios (cont.)
e1 user enters correct coins
e2 user selects fruit but vending machine does not have the

fruit anymore
e3 nothing happens
e4 user selects cancel
e5 the money gets returned
f1 user enters correct coins
f2 user selects a fruit but vending machine does not have the

fruit anymore
f3 user selects another fruit
f4 if money is correct fruit with rest money is dispensed; if

money is not sufficient, the user can add more coins



Functional Test: for Buy Fruit Use Case: Input Data
Sets

Input data set Input property
A Exact coins; enough fruits; first coins, then fruit selection
B Exact coins; enough fruits; first fruit selection, then coins
C Exact coins; not enough fruits; first coins, then fruit selection, then cancel
D Exact coins; not enough fruits; first fruit selection, then coins, then cancel
E More coins; enough fruits; first coins, then fruit selection
F More coins; enough fruits; first fruit selection, then coins
G More coins; not enough fruits; first coins, then fruit selection, then cancel
H More coins; not enough fruits; first fruit selection, then coins, then cancel
I Less coins; enough fruits; first coins, then fruit selection
J Less coins; enough fruits; first fruit selection, then coins
K Less coins; not enough fruits; first coins, then fruit selection, then cancel
L Less coins; not enough fruits; first fruit selection, then coins, then cancel



Functional Test for Buy Fruit Use Case: Test Cases

Input data set Contents Expected Output
A 1,2; apple apple dispensed
B Apple; 1,2 apple dispensed
C 1,2; apple; cancel no fruit dispensed; returned DKK 3
D Apple; 1,2; cancel no fruit dispensed; returned DKK 3
E 5, apple apple dispensed; returned DKK 2
F Apple; 5 apple dispensed; returned DKK 2
G 5, apple; cancel no fruit dispensed; returned DKK 5
H Apple; 5; cancel no fruit dispensed; returned DKK 5
I 5; banana no fruit dispensed; current money shows 5
J Banana; 5,1 no fruit dispensed; current money shows 6
K 5,1; banana; cancel no fruit dispensed; returned DKK 6
L Banana; 5,1;cancel no fruit dispensed; returned DKK 6



Manual vs Automated Tests

I Manual test-plans
I Table of input / expected output
I Run the application
I Check for desired outcome

I Automatic tests
a. Test the GUI directly
b. Testing ”under the GUI”

→ Layred architecture



Application Layer

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()

*



Functional Test for Buy Fruit Use Case: JUnit Tests

public void testInputDataSetA() {
VendingMachine m = new VendingMachine(10, 10);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.selectFruit(Fruit.APPLE);
assertEquals(Fruit.APPLE, m.getDispensedItem());

}

public void testInputDataSetB() {
VendingMachine m = new VendingMachine(10, 10);
m.selectFruit(Fruit.APPLE);
m.input(1);
m.input(2);
assertEquals(0, m.getCurrentMoney());
assertEquals(Fruit.APPLE, m.getDispensedItem());

}



Functional Test: JUnit Tests (cont.)

public void testInputDataSetC() {
VendingMachine m = new VendingMachine(0, 0);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.selectFruit(Fruit.APPLE);
assertEquals(null, m.getDispensedItem());
m.cancel();
assertEquals(null, m.getDispensedItem());
assertEquals(3, m.getRest());

}

public void testInputDataSetD() {
VendingMachine m = new VendingMachine(0, 0);
m.selectFruit(Fruit.APPLE);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.cancel();
assertEquals(null, m.getDispensedItem());
assertEquals(3, m.getRest());

}

...



Contents

Systematic tests

Code coverage

Project



Code coverage

I How good are the tests?
I The tests have covered all the code
I Code coverage

I statement coverage
I decision coverage
I condition coverage
I path coverage
I . . .



Code coverage: statement, decision, condition

int foo (int x, int y)
{

int z = 0;
if ((x>0) && (y>0)) {

z = x;
}
return z;

}



Code coverage: path

int foo (boolean b1, boolean b2)
{

if (b1) {
s1;

} else {
s2;

}
if (b2) {

s3;
} else {

s4;
}

}



Coverage Tool

I Statement, decision, and condition coverage
I EclEmma (http://eclemma.org):

http://eclemma.org


Coverage with EclEmma



Coverage with EclEmma



Coverage with EclEmma



Contents

Systematic tests

Code coverage

Project



Course 02161 Exam Project

I Exam project: Monday 8.4 — Monday 13.5
I Project plan: Friday 2.4
I 10 min demonstrations of the software are planned for

Monday 13.5
→ The tests need to be demonstrated



Introduction to the project

I What is the problem?
I Project planning and time recording system
I More information on CampusNet

I What is the task?
I Create a

I Project plan
I Requirement specification
I Programdesign
I Implementation
I Tests

I Deliver a
I report describing the requirement specification, design, and

implementation (as a paper copy and PDF uploaded to
CampusNet)

I an Eclipse project containing the source code, the tests,
and the running program (uploaded to CampusNet as a ZIP
file)



Organisational issues

I Group size: 2 – 4
I Report can be written in Danish or English
I Program written in Java and tests use JUnit
I Each section, diagram, etc. should name the author who

made the section, diagram, etc.
I You can talk with other groups (or previous students

that have taken the course) on the assignment, but it is
not allowed to copy from others parts of the report or
the program.

I Any text copy without naming the sources is viewed as
cheating

I In case of questions with the project description send email
to hub@imm.dtu.dk

hub@imm.dtu.dk

	Systematic tests
	Code coverage
	Project

