
Software Engineering I (02161)
Week 2

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

Contents

Java
Collections
User-defined Exceptions
Delegation

What are software requirements?

Requirements Engineering Process

Use Cases

Glossary

Summary

Lists (Collections)

I Interface: java.util.List<T>
→ http://docs.oracle.com/javase/1.4.2/docs/

api/java/util/List.html

I Classes implementing the List interface:
I java.util.ArrayList<T>, java.util.Vector<T> (among others)

→ Use java.util.List<T> in all methods and as the type of the
instance variable

→ Information hiding
I decoupling implementation from usage

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/List.html

Creating a List

I Instance variable containing a list
List<Book> books = new ArrayList<Book>();

I Alternative (not so good)
ArrayList<Book> books = new ArrayList<Book>();

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}

I Variant b)
for (Iterator it = books.iterator(); books.hasNext();) {

Book book = it.next();
// do something with book

}
I Variant c) recommended way

for (Book book : books) {
// do something with book

}

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}
I Variant b)

for (Iterator it = books.iterator(); books.hasNext();) {
Book book = it.next();
// do something with book

}

I Variant c) recommended way
for (Book book : books) {

// do something with book
}

Iterating over a list

I Variant a)
for (int i = 0; i < books.size(); i++) {

Book book = books.get(i);
// do something with book

}
I Variant b)

for (Iterator it = books.iterator(); books.hasNext();) {
Book book = it.next();
// do something with book

}
I Variant c) recommended way

for (Book book : books) {
// do something with book

}

User-defined Exceptions

I Purpose: To notify the caller about some exceptional or
error state of the method
public void addBook(Book book)

throws OperationNotAllowedException {
if (!adminLoggedIn())
throw new OperationNotAllowedException(...);

...
}

I Creating a user defined exception
public class OperationNotAllowedException extends Exception {
public OperationNotAllowedException(String errorMsg) {

super(errorMsg);
}

}

I Throwing a user-defined exception
throw new OperationNotAllowedException("some error message");

Checked vs. unchecked Exceptions

I Checked Exception
public class MyCheckedException extends Exception {...}

→ Methods which throw MyCheckedException must have
throws MyCheckedException in the signature, e.g.
public void m() throws MyCheckedException {...}

I Unchecked Exception
public class MyUncheckedException extends Error {...}

→ Methods don’t need the throw clause

User-defined Exceptions: Example

I Catching an user-defined exception
try {

libApp.addBook(book1);
} catch (OperationNotAllowedException e) {
// Error handling code
}

Compiler error: Unreachable catch block

I Code added by Eclipse
public void addBook(Book book) { }

I Test code
try {
libApp.addBook(book1);
fail();

} catch (OperationNotAllowedException e) { .. }

I Compiler error: ”Unreachable catch block for
OperationNotAllowedException. This exception is never
thrown from the try statement body”

I Solution
public void addBook(Book book)

throws OperationNotAllowedException { }

I Problem only occurs with checked exceptions

Compiler error: Unreachable catch block

I Code added by Eclipse
public void addBook(Book book) { }

I Test code
try {
libApp.addBook(book1);
fail();

} catch (OperationNotAllowedException e) { .. }

I Compiler error: ”Unreachable catch block for
OperationNotAllowedException. This exception is never
thrown from the try statement body”

I Solution
public void addBook(Book book)

throws OperationNotAllowedException { }

I Problem only occurs with checked exceptions

Testing and exceptions

I Test for the presence of an exception
@Test
public void testSomething() {
...
try {
// Some code that is expected to
// throw OperationNotAllowedException
assertFalse(libApp.adminLoggedIn());
libApp.addBook(b);
fail("Expected OperationNotAllowedException to be thrown");

} catch (OperationNotAllowedException e) {
// Check, e.g., that the error message is correctly set
assertEquals(expected, e.getMessage());

}
}

I Alternative test
@Test(expected=OperationNotAllowedException.class)
public void testSomething() {...}

I No try-catch if you don’t test for an exception: JUnit knows
best how to handle not expected exceptions

Delegate Responsibility

I Original
public List<Book> search(String string) {

List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.getSignature().contains(string) ||
book.getTitle().contains(string) ||
book.getAuthor().contains(string)) {
booksFound.add(book);

}
}
return booksFound;

}

Better: With Delegation

I In class LibraryApp
public List<Book> search(String string) {

List<Book> booksFound = new ArrayList<Book>();
for (Book book : books) {

if (book.contains(string)) {
booksFound.add(book);

}
}
return booksFound;

}
I In class Book

public boolean contains(String string) {
return signature.contains(string) ||

title.contains(string) ||
author.contains(string)

}

Contents

Java

What are software requirements?

Requirements Engineering Process

Use Cases

Glossary

Summary

Basic Activities in Software Development

I Understand and document what kind of the software the
customer wants
→ Requirements

I Determine how the software is to be built
→ Design

I Build the software
→ Implementation

I Validate that the software solves the customers problem
→ Testing

Requirements Engineering

Requirements Analysis
Understand and document the kind of software the customer
wants

I Describe mainly the external behaviour of the system and
not how it is realised
→ what not how

I Techniques for discovering, understanding, and
documentation

I Use Cases
I Glossary
I User Stories

Travel Agency Example: User Requirements

The travel agency TravelGood comes to you as software
developers with the following proposal for a software project:

I Problem description / user requirements
I TravelGood wants to offer a trip-planning and booking

application to its customers. The application should allow
the customer to plan trips consisting of flights and hotels.
First the customer should be able to assemble the trip,
before he then books all the flights and hotels in on step.
The user should be able to plan several trips. Furthermore
it should be possible to cancel already booked trips.

Types of Requirements

I User requirements
I The requirements the user has

I System requirements
I The requirements for the software development team

I Functional Requirements
I E.g. the user should be able to plan and book a trip

I Non-functional Requirements
I All requirements that are not functional
I E.g.

I Where should the software run
I What kind of UI the user prefers

Travel Agency

I Functional Requirements
I ”plan a trip, book a trip, save a planned trip for later

booking, . . . ”
I Non-functional requirements

I ”System should be a Web application accessible from all
operating systems and most of the Web browsers”

I ”It must be possible to deploy the Web application in a
standard Java application servers like GlassFish or Tomcat”

I ”The system should be easy to handle (it has to a pass a
usability test)”

Categories of non-functional requirements

Ian Sommerville, Software Engineering - 9

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Characteristics of good requirements

I Testability
→ manual/automatic acceptance tests

I Measurable
I Not measurable: The system should be easy to use by

medical staff and should be organised in such a way that
user errors are minimised

I Measurable: Medical staff shall be able to use all the
system functions after four hours of training. After this
training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Possible measures

Ian Sommerville, Software Engineering - 9

Contents

Java

What are software requirements?

Requirements Engineering Process

Use Cases

Glossary

Summary

Requirements engineering process

A spiral view of the requirements engineering process

Ian Sommerville, Software Engineering - 9

Requirements Engineering Process: Techniques

I Elicitation
I Interviews
I Glossary
I Use Cases / User Stories

I Specification
I Glossary
I Use Cases / User Stories

I Validation
I Inspection

I Validity, Consistent, Complete, Realistic, . . .
I Creation of tests

Contents

Java

What are software requirements?

Requirements Engineering Process

Use Cases

Glossary

Summary

Use Case

Use Case
A Use Case is a set of interaction scenarios of one or several
actors with the system serving a common goal.

Use Case Diagram
A use case diagram provides and overview over the use cases
of a system and who is using the functionality.

Detailed Use Case description
A detailed use case description describes the interaction
between the user and the system as a set of scenarios

Use Case Example: Travel Agency use case list
available flights

name: list available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and

the arrival and departure dates
2. The system provides a list of available flights with prices

and booking number
alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Use Case Diagram

Types of use case diagrams

a) Business use cases (kite level use case (from Alistair
Cockburn))

b) System use cases / sea level use case
c) Use cases included in sea level use cases are called fish

level use cases by Alistair Cockburn

UML Destilled, Martin Fowler

Travel Agency functional requirements: Business use
cases

Administrator

Plan Trip

Book Trip

Cancel Trip

User
Manage Trip

Manage Flights

Manage Hotels

TravelAgency

«includes»

«includes»

Travel Agency functional requirements: System use
cases Part I: manage trip

Travel Agency functional requirements: System use
cases Part II: plan trip

Travel Agency functional requirements: System use
cases Part III: manage flights

Travel Agency functional requirements: System use
cases Part IV: manage hotels

Detailed use cases: Template

Template to be used in this course for detailed use case
descriptions

name: The name of the use case
description: A short description of the use case
actor: One or more actors who interact with the system
precondition: Possible assumptions on the system state to enable the
use case

main scenario: A description of the main interaction between user and
system

→ Note: should only explain what the system does from the
user’s perspective

alternative scenarios:
note: Used for everything that does not fit in the above categories

Travel Agency: detailed use case list available flights

name: list available flights
description: the user checks for available flights
actor: user

main scenario:
1. The user provides information about the city to travel to and

the arrival and departure dates
2. The system provides a list of available flights with prices

and booking number
alternative scenario:
1a. The input data is not correct (see below)

2. The system notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

Scenarios

I Interaction between an actor and the system
I Anything the user does with the system
I System responses
I Effects visible/important to the customer

I Not part of the interaction: What the system internally does

Travel Agency: detailed use case cancel trip

name: cancel trip
description: cancels a trip that was booked
actor: user
precondition:

I the trip must have been booked
I the first date for a hotel or flight booking must be one day in

the future
main scenario:

1. user selects trip for cancellation
2. the system shows how much it will cost to cancel the trip
3. selected trip will be cancelled after a confirmation

Travel Agency: detailed use case plan trip
This use case includes other use cases

name: plan trip
description: The user plans a trip consisting of hotels and
flights
actor: user
main scenario:

repeat any of the following operations in any order until
finished

1. list available flights (use case)
2. add flight to trip (use case)
3. list available hotels (use case)
4. add hotel to trip (use case)
5. list trip (use case)
6. delete hotel from trip (use case)
7. delete flight from tip (use case)

Note: the trip being planned is referred to as the current
trip

Travel Agency: detailed use case save trip

name: save trip
description: provides the current trip with a name and
saves it for later retrieval
actor: user
precondition: the current trip is not empty
main scenario:

1. user provides a name for the trip
alternative scenarios:

1: the name is not valid
2: notify the user of the fact and end the use case

1: a trip with the name already exists
2: ask the user if the trip should overwrite the stored trip

3a: If yes, overwrite the stored trip
3b: If no, end the use case

Use cases and system boundary

Actors and use cases depend on the system boundary

I System Boundary: Travel
Agency

I System Boundary: Front
end of the travel agency

Contents

Java

What are software requirements?

Requirements Engineering Process

Use Cases

Glossary

Summary

Glossary

I Purpose: capture the customer’s knowledge of the
domain so that the system builders have the same
knowledge

glossary (plural glossaries)
”1. (lexicography) A list of terms in a particular domain of
knowledge with the definitions for those terms.” (Wikitionary)

I List of terms with explanations
I Terms can be nouns (e.g. those mentioned in a problem

description) but also verbs or adjectives e.t.c.

Example

Part of a glossary for the travel agency
User: The person who is using the travel agency
Trip: A trip is a collection of hotel and flight informations. A trip can be
booked and, if booked, cancelled.
Booking a trip: A trip is booked by making a hotel reservation for the
hotels on the trip and a flight booking for the flights of the trip
Flight booking: The flight reservation is booked with the flight agency
and is payed.
Reserving a hotel: A hotel is reserved if the hotel informed that a
guest will be arriving for a certain amount of time. It is possible that the
hotel reservation requires a credit card guarantee.
. . .

I Warning
I Capture only knowledge relevant for the application
I Don’t try to capture all possible knowledge

Contents

Java

What are software requirements?

Requirements Engineering Process

Use Cases

Glossary

Summary

Summary
I Requirements analysis is about finding out what the

software should be able to do, not how
I Types: functional and non-functional requirements
I Qualities: testable and measurable
I Process: Discover (Elicitation), Document (Specification),

Validate (Validation)
I Use cases

I Used for both finding and documenting the requirements
I What are the functions the user can perform with the

software?
I Detailed use cases: Detailed (textual) description of what

the software should do
I Use case diagram: Graphical overview over the functionality

of the software

I Glossary: Document domain knowledge and define a
common language between customer and software
developer

Exercises

I For this week
I http://www2.imm.dtu.dk/courses/02161/2013/
slides/exercise02.pdf

I Still ongoing: programming exercises
I http://www2.imm.dtu.dk/courses/02161/2013/
index2.html

http://www2.imm.dtu.dk/courses/02161/2013/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2013/slides/exercise02.pdf
http://www2.imm.dtu.dk/courses/02161/2013/index2.html
http://www2.imm.dtu.dk/courses/02161/2013/index2.html

	Java
	Collections
	User-defined Exceptions
	Delegation

	What are software requirements?
	Requirements Engineering Process
	Use Cases
	Glossary
	Summary

