Software Engineering | (02161)
Week 1

Assoc. Prof. Hubert Baumeister

DTU Compute
Technical University of Denmark

Spring 2013

=
—
=

i

Contents

Course Introduction

Introduction to Software Engineering
Practical Information

Eclipse, JUnit, and Exercises

User-defined Exceptions

The course

>

>

5 ECTS course 02161: Software Engineering 1

Target group: Bachelor in Software Technology and IT and
Communication in the second semester
Learning objectives

» To have a over the field software engineering

t is required in software engineering besides
rammin

» To be able to take part in bigger software development
projects
> To be able tq{ Eommunicatb with other software designers
about requirements, architecture, design
— To be able to conduct a smaller project from an informal
and open description of the problem

Who are we?

» 117 students with different backgrounds

» Bachelor Softwaretek.: 60
» Bachelor It og Kom.: 44

» Other bachelor: 9

» Other: 4

» Teacher Conputc
» Hubert Baumeister, Assoc. Prof. at DTU tnformatik
(hub@imm.dtu.dk; office 322.010 (will be changing during
the course :-()

» 3 Teaching assistants

» Thomas Feld
» Patrik Reppien
» NN

Contents

Course Introduction

Introduction to Software Engineering
Introduction
Development Example

Practical Information
Eclipse, JUnit, and Exercises

User-defined Exceptions

Building software

=8 A

Tools and techniques for building software, in particular /arge
software

What is software?

» Software is everywhere

» Stand-alone application (e.g. Word, Excel)

» Interactive transaction-based applications (e.g. flight

booking)

Embedded control systems (e.g., control software the

Metro, mobile phones)

Batch processing systems (e.g. salary payment systems,

tax systems)

Entertainment systems (e.g. Games)

System for modelling and simulation (e.g. weather

forecasts)

Data collection and analysing software (e.g. physical data

collection via sensors, but also data-mining Google

searches)

>E (e.g. cloud, system of interacting
software systems

> ...

v

v

v

v

v

What is software?

» Software: Not only the computer program(s) but also

» Documentation (User—, System-—)
» Configuration files, ...
» Types of software

» Mass production: The maker of the software owns the
system specification

» Customised software: The customer owns the system
specification

» Mixture: Customised software based on mass production
software

- Notgng (025 et

» Though there are general principles applicable to all
domains

Attributes of Software

v

Maintainability
Dependability and security
Efficiency

Acceptability

v

v

v

Software Engineering

'ZLM)/Q Z Vl/w.“tads
N

Software Engineering Defintion (Sommerville 2010)

Software engineering is ad_engineeringydiscipline that is

concerned with all aspects of software production from the
early stages of system specification through to maintaining the

system after it has gone into use.

Basic Activities in Software Development

77
>d an@t what kind of the software the

customer wants

> Determie software is to be built—"—> j)e&ngw
» Build the software —> l [%/weml&kba

and being able tg'talk abopt the software

» Validate that the software solves the customers problem

—> Toy

?Q$u Vrtineg HS

noofo_ul'lfé/

Example Vending Machine
)
Th |
S
o
® =

lME? Design and implement a control
software for a vending machine

Q\ |

Vending Machine: Requirements documentation

» Understand and document what kind of the software the
customer wants
— Glossary
— Use case diagram
— Detailed use case

Glossar
»(Vending maching: The vending machine allows users to

buy fruit.
» User: The user of the vending machine buys fruit by
inserting coins into the machine.
Owner: The owner owns the vending machine. He is
required to refill the machine and can remove the money
from the machine.
Display: The display shows how much money the user has
inserted.
Buy fruit: Buy fruit is the process, by which the user inputs
coins into the vending machine and selects a fruit by
pressing a button. If enough coins have been provided the
selected fruit is dispensed.
Cancel: The user can cancel the process by pressing the
button cancel. In this case the coins he has inserted will be
returned.

v

v

v

v

Use case diagram Uce 2%

\\

}4&5% VendingMachine

er

Refill Machine

Takeout Money

!

Owner

Detailed Use Case: Buy Fruit

name: Buy fruit
description: Entering coins and buying a fruit

actor: ::Zfr

1. Input coins until the price for the fruit to be selected is
reached

2. Select a fruit

3. Vending machine dispenses fruit

alternative scenarios

al. User inputs more coins than necessary
a2. select a fruit

a3. Vending machine dispenses fruit

a4. Vending machine returns excessive coins

D

Vending Machine: Specify success criteria

» Prepare for the validation
— Create tests together with the customer that show when
system fulfils the customers requirements

— Acceptance tests
» Test driven development

— create tests before the implementation
» Otherwise: after the implementation

—’EéEest\i)

—/>
public void(tesE}uyFruitExactMoney() {

ine m = new VendingMachine (10, 10);
m.input (1);
; 5

assertRquals m. etCurrentMoney());<§i—
(m.selectFruit (Fruit.A
asser

quals (Fruit .APPLE, m.getDispensedItem());

}

@Test
public void testBuyFruitOverpaid() {
VendingMachine m = new VendingMachine (10, 10);

— N\ m.input(5);
_:E assertEquals (5, m.getCurrentMoney());
— m.selectFruit (Fruit.APPLE);

>~ assertEquals (Fruit .APPLE, m.getDispensedItem());
assertEquals (2, m.getRest());
}

// more tests
// at least one for each main/alternative scenario

Vending Machine: Design and implementation

» Determine how the software is to be built

— Class diagrams to show th ;@. the system
— State machines to show fow thes

» Build the software
— Implement the state machine using the state design pattern

High-level Class diagram

VendingMachine «enumeration»

—| dispenseditem: Fruit Fruit

—> | currentMoney: int APPLE
totalMoney: int BANANA

— [restMoney: int *

—> input(money: int)

_—

select(f: fruit)
cancel()

Application logic as state machine

State machine Vendnghachine LifeCycl |] VendingMachine LeCyce 1]

Integer)/ currentMoney ;= currentoneyt m

cancell) / dispense(nil)

selecti - Fruit) [notif = selectedFruit) and not(enoughMoney(f)] / selectedsruit :=

Selecti f: Fruit) d hasFrui(f]/ selectedFruit = frut_

Pt
) | it

| esalagil Fruit) [noughoneyfland hssFrutif) / dispense()
—_

select(f Fruit) [not(hasFruit()] / dispense(nil)

selecti - Fruit) [enoughMoneyif))/ dispense(f)

input(m

inputl m : Integer) [enoughMoney(selectedFrut)) / currentMoney := currentMoney + 1: dispense(f)
— —_—

cancell)/ dispense(nil)

Integer) [not(enoughMoney(selectedfrut)] / currrentioney := currentMoney + 1

Design of the system as class diagram

Uses the stafe design pattern

dispenseditem: Fruit
currentMoney: int
totalMoney: int
restMoney: int

A

input(money: int)

select(f: fruit)

cancel()

~setldleState()

~dispense(f: Fruit)
~setCurrentStateForFruit(f: Fruit)
~hasFruit(f: Fruit)

~‘ m.setCurrentMoney(m.getCurrentMoney() + i); %

nt€rface»
VendingMachineState,
input(m: VendingMachine, money: int)

select(m: VendingMachinef: fruit) if (!m.hasFruit(fruit)) {
cancel(m: VendingMachine) m.setldleState();
return;
}
~if @ (fruit)) {

A

«enumeration»
Fruit

APPLE
BANANA

o
(idlestate)
o

input(m: VendingMachine, money: inty=]
select(m: VendingMachinef: fruit) ===
cancel(m: VendingMachine)

|| msetidiestate();

| m.dispense(fruit);

| |}else{

1 m.setCurrentStateForFruit(fruit);
|

!

m.dispense(null);

T

FruitSelectionState
input(m: Ven
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine) ~ _ _

—foney |n()—/

super.input(m, \),G
MoneyFor(selectedFruit)) {

m.dispense(selectedFruit);

=~ _| m.setdiestate(); I\
super.cancel(m);

Vending Machine: Visualization of the Execution

» Documentation of how the implementation of the Vending
Machine works:

— Use Interaction Diagrams, aka. Sequence Diagrams

Interaction Diagram: Swing GUI

GUl

performed| | ! ! !

vm:VendingMachine
I

input(DKK 5)

D satCurrentioney(oKK)

D setchanged0)

D notityobserver() r

Sev pev-

SelectFruit(APPLE)

date(fruit)

D setDispenseltem(APPLE)

setTexd("Apple")

D setRest(2)

~}|HCV‘A

Contents

Course Introduction

Introduction to Software Engineering
Practical Information

Eclipse, JUnit, and Exercises

User-defined Exceptions

Course content

0. Introduction
1. Requirements Engineering

2. Software Testing (JUnit, Test Driven Development,
Systematic Tests, Code Coverage)

3. System Modelling (mainly based on UML)
4. Architecture (e.g layered architecture)

5. Design (among others Design Patterns and Design by
Contract)

6. Software Development Process (focus on agile processes)
7. Project Management (project planning)

Approach to teaching

» Providing a general overview of what makes up software
engineering
» Teach a concrete method of doing a project (i.e. agile
software development with test-driven development)
» e.g. test driven development, user stories, agile project
planning, ...

Course activities

» Reading assignments before the lecture: | will assume that
you have read the assignments!!!

» Pre-flight tests checking that you have read the
assignments

» Lectures every Monday 13:00 — approx 15:00 (Lecture
plan is on the course Web page)
» Exercises in the E-databar (341.003, 015)
» Teaching assistants will be present : 15:00 — 17:00
» Expected work at home: 5 hours (lecture preparation;
exercises, ...)
» Assignments not mandatory

» But hand-in recommended to get feedback
» Preparation for the examination project

Examination

v

Exam project in.grQups (2—4
> Sor:twjare pDe(monst)ration
» no written examination
» Week 04: Project introduction and forming of project W
groups — Par‘/rscnpeulﬂob' I o v
» Week 07: Submission of project plans by the project
groups
» Week 08: Start of the project

» Week 13: Demonstration of the projects (each project 15
min) -

Course material

» Course Web page:
http://www.imm.dtu.dk/courses/02161 contains

» practical information: (e.g. lecture plan)

» Course material (e.g. slides, exercises, notes)

» Check the course Web page regularly
» CampusNet: Is being used to send messages;

» make sure that you receive all messages from CampusNet
» Books:

» Textbook: Software Engineering 9 from lan Sommerville
and UML Destilled by Martin Fowler —= o {a v’ Roocs
» Suplementary literature on the course Web page

http://www.imm.dtu.dk/courses/02161

Contents

Course Introduction

Introduction to Software Engineering
Practical Information

Eclipse, JUnit, and Exercises

User-defined Exceptions

Programming Assignments

» Implementation of a library software

» Guided development based on agile software development
principles
» User-story driven: The development is done based on user
stories that are implemented one by one
» Test-driven: Each user-story is implemented by first writing
the test for it and then writing the code

Layered Architecture

1. Development of the application +
domain layer (assignments 1 — 4)

2. Presentation layer: Command
line GUI (assignment 5)

';;::;;;f‘“"’%l—é 3. Simple persistency layer
(assignment 6)

Eric Evans, Domain Driven Design, Addison-Wesley,

2004

First week’s exercise

» Using Test-Driven Development to develop the application
+ domain layer

» Basic idea: First define the tests that the software has to
pass, then develop the software to pass the tests

» Writing tests before the code is a design activity, as it
requires to define the interface of the code and how to use
the code, before the code is written

» Test are automatic using the JUnit framework

» First Week’s exercise: Tests are given, you implement just
enough code to make the tests pass

— Video on the home page of the course
» This is done by uncommenting each test one after the
other

» First implement the code to make one test run, only then
uncomment the next test and make that test run

JUnit

» JUnit is designed by Kent Beck in Erich Gamma to allow
one to write automated tests and execute them
conveniently

» JUnit can be used standalone, but is usually integrated in
the IDE (in our case Eclipse)

» We are going to use JUnit version 4.x which indicates tests
to be run automatically using the @org.junit. Test
annotation (or just @Test if org.junit.Test is imported)

Example of a JUnit Test

The following tests one scenario of the login functionality:

1.
2.
3.

First check that the adminstrator is not logged in
login the adminstrator

Check that the login operation returns the correct return
value (in this case true)

Check with the system, that the user is logged in

@Test

public void testLogin () {
LibraryApp libApp = new LibraryApp();
assertFalse (libApp.adminLoggedIn ()) ;
boolean login = libApp.adminLogin ("adminadmin");
assertTrue (login);
assertTrue (1ibApp.adminLoggedIn()) ;

JUnit: Creating new Eclipse projects |

» With JUnit 4.x every class can have tests by just
annotating the method with @Test
» However, | suggest to separate tests from the source code
by putting them into their own source folder
» This can be done either on creation time or by

» Using the properties dialog (selecting Java Build Path and
then Source)

S Properies for brary.

Java Build Path v v v

Add Folder

Link Source.

Edt.

Remove

Allow output folders for source folders
Defautt output folder:

ibrarybin Browse.

JUnit: Creating new Eclipse projects Il

» In addition, the JUnit 4 libraries have to be available in the
project. This can be done again in the properties dialog
(selecting Java Build Path and then Libraries)

S) Properties for ibrary.

Java Build Path Gy oy -

Add JARS

Add External JaRs.
Add Variable,
Add Library.

Add Class Folder

Add External Class Folger.

@ [ox Cancel

Eclipse code hint

» Eclipse helps with Test-Driven Development by offering
help to fix the code, e.g. implementing missing classes and
methods

» In the first test case, Eclipse does not know the class
LibraryApp and proposes to create it if one clicks on the
light bulb [4.

(TR

public void testlLogin() {

[R P S T | S g

» Make sure that the source folder ends with src and not test

= - New

Java Class
Create a new Java class.

Source folder: Iibraryo@

Package: Q[dtu.library.apb

Contents

Course Introduction

Introduction to Software Engineering
Practical Information

Eclipse, JUnit, and Exercises

User-defined Exceptions

User-defined Exceptions

» Purpose: To notify the caller about some exceptional or
error state of the method
public void addBook (Book book)
throws OperationNotAllowedException {

if (not (adminLoggedIn ())
throw new OperationNotAllowedException(...);

}
» Creating a user defined exception

public class OperationNotAllowedException extends Exception {
public OperationNotAllowedException (String errorMsg) {
super (errorMsgqg) ;
}
}

» Throwing a user-defined exception

throw new OperationNotAllowedException ("some error message");

Checked vs. unchecked Exceptions

» Checked Exception

public class MyCheckedException extends Exception {...}

— Methods which throw MyCheckedException must have
throws MyCheckedException in the signature, e.g.
public void m() throws MyCheckedException {...}

» Unchecked Exception
public class MyUncheckedException extends Error {...}

— Methods don’t need the throw clause

User-defined Exceptions: Example

» Catching an user-defined exception
try {

// Some block of code

} catch (OperationNotAllowedException e) {
// Error handling code

}

» Test for the presence of an exception

@Test
public void testSomething() {

try |

}
}

// Some code that is expected to

// throw OperationNotAllowedException
assertFalse (1libApp.adminLoggedIn()) ;
1libApp.addBook (b) ;

fail ("Expected OperationNotAllowedException to be thrown");
catch (OperationNotAllowedException e) {

// Check, e.g., that the error message is correctly set
assertEquals (expected, e.getMessage());

» Alternative test

@Test (expected=OperationNotAllowedException.class)
public void testSomething() {...}

	Course Introduction
	Introduction to Software Engineering
	Introduction
	Development Example

	Practical Information
	Eclipse, JUnit, and Exercises
	User-defined Exceptions

