
Technical University of Denmark Spring 2013
DTU Informatics Prog. Assignment Nr. 6
Assoc. Prof. H. Baumeister February 3, 2013

02161: Software Engineering 1

Note
This is an advanced exercise and takes more time.

Adding a persistency layer to the library application
The last step for the library application is to to add a persistency layer to the ap-

plication. To keep the problem simple, we use a rather naive storage for the objects.
Media and users are both stored each in their respective files media.txt and users.txt.
Note that addresses don’t get their own file; they are stored with the users. The user is
represented as follows in users.txt

dtu.library.app.User

cpr-number

Some Name

a@b.dk

Kongevejen

2120

København

b01

c01

<empty line>

First, there is the name of the user class, then the values of the fields cprNumber, name,
email. This is followed by the values of the address field street, postNumber, and town.
Finally, this is followed by the signatures (one on each line) for the borrowed media (in
the example b01 and c01. Note that the fields are followed by an empty line as an end-of-
record marker. The storage of media proceeds with a similar structure in media.txt, i.e.
the name of the concrete medium class and then the fields (starting with the signature)
and terminated with an empty line. For example:

dtu.library.app.Book

b01

some book author

some book title

Mar 13, 2011

<empty line>

Note that, in case that the borrow date is empty, the string ”null” (without quotes)
should be used. The basic operations of the persistency layer are based on the standard

1

operations of a database: create new records, read records, update records, and delete
records (CRUD).

LibraryApp

PersistencyLayer
...
clearDatabase()
createMedium(m:Medium)
createUser(u:User)
readMedium(sig:String):Medium
readUser(cpr:String):User
updateMedium(m:Medium)
updateUser(m:User)
deleteMedium(sig:String)
deleteUser(cpr:String)
getUsers(): List<User>
getMedia(): List<Medium>
...

 1

User
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

PersistentObject

storeOn(out:PrintWriter)
getKey():String

key:String
0..1cache_users

key:String
0..1cache_media

Medium
...
...
getKey():String
storeOn(out:PrintWriter)
readFromReader(r:Buff.Read.
 ol:PersistencyLayer)

{
 return getSignature();
}

{
 return getCprNumber();
}

*
borrowedMedia

6.1 Implementation of a persistency layer
Implement the persistency layer based on the tests given in http://www2.imm.dtu.

dk/courses/02161/2013/files/library07.zip (library07.zip contains the solutions to
exercises 1—6 albeit without a full UI) and the diagram above.

• Note: The diagram above is the target design you should reach, but it does not
make sense to implement the diagram immediately; instead, when implementing
each of the tests, incrementally create the implementation that corresponds to the
diagram

• createMedium/createUser adds the representation of a medium/user as described
above to the file media.txt/users.txt using the operation storeOn of class Medium/class
User

• readMedium/readUser reads the records in the file media.txt/users.txt until it finds
the medium/user with the correct key (i.e. CPR number or signature)

– The operations readFromReader in class User and Medium can be used to read
the fields for a user and a medium from a buffered reader

• updateMedium(m:Medium)/updateUser(u:User) updates the files media.txt and
users.txt by replacing the old record for m/u by the new record.

– This is done by reading each record from the files and storing them (using
storeOn) to new files. Finally, the new files are renamed to the old files (oper-
ation rename in class File).

2

http://www2.imm.dtu.dk/courses/02161/2013/files/library07.zip
http://www2.imm.dtu.dk/courses/02161/2013/files/library07.zip

• deleteMedium/deleteUser removes the record with the given signature / CPR num-
ber from the data files.

– This is done similar to the update operations by copying all entries of the old
files into new files (without the object to be deleted) and renaming the new
files to the old files

• getUsers/getMedia creates a list of users / media from the records in the data files.

6.2 Use the library application together with the persistency layer

1) Refactor the library application to use the persistency layer.

– Note that some tests needs to be adapted slightly, e.g. to use the clearDatabase
operation of the persistency layer to ensure that the tests start with an empty
database

2) Create additional tests to make sure that the right information is stored in the
database, e.g. that when borrowing/returning a media, that then the data files are
updated (i.e. by sending the updateMedium/updateUser message to the persistency
layer).

– There need to be tests to ensure that whenever attributes of users/media are
changed that then the corresponding update operation of the persistency layer
is called

∗ Note that the cpr number of a user and a signature of a medium is read
only and should not be able to change once set

More information on the implementation can be found on the Web page of the course.

3

