
Software Engineering I (02161)
Week 9: Principles of good design, Patterns, Layered Architecture

Hubert Baumeister

Informatics and Mathematical Modelling
Technical University of Denmark

Spring 2010

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 5 / 81

Introduction

What is good design? MarriageAgency Example

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 7 / 81

Introduction

What is good design? MarriageAgency Example 2

Method matchCustomer in class MarriageAgency

public ArrayList<Customer> matchCustomer(Customer customer){
ArrayList<Customer> res = new ArrayList<Customer>();
for (Customer potential : customers) {
if (potential.getSex() != customer.getSex()) {

int yearDiff = Math.abs(potential.getBirtYear()
-customer.getBirtYear());

if (yearDiff <= 10) {
for (String interest : potential.getInterests()) {
if (customer.getInterests().contains(interest)) {

res.add(potential);
break;

} } } } }
return res;

}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 8 / 81

Introduction

What is good design? Improved Design

Method findMatchingCustomers in class MarriageAgency

public ArrayList<Customer>
findMatchingCustomers(Customer customer) {

ArrayList<Customer> res = new ArrayList<Customer>();

for (Customer potential : customers) {
if (customer.match(potential)) {

res.add(potential);
}

}

return res;

}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 9 / 81

Introduction

What is good design? Improved Design 2

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 10 / 81

Introduction

What is good design? Improved Design 3
Methods in class Customer

public boolean match(Customer c) {
return isOppositeSex(c)

&& ageDifferenceSmaller(c,10)
&& hasOneInterestInCommon(c);

}

protected boolean isOppositeSex(Customer c) {
return sex != c.getSex();

}

protected boolean ageDifferenceSmaller(Customer c, int age) {
return Math.abs(this.getBirthYear() - c.getBirthYear()) <= age;

}

protected boolean hasOneInterestInCommon(Customer c) {
for (String interest : getInterests()) {
if (c.getInterests().contains(interest)) {
return true;
} }

return false;
}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 11 / 81

Introduction

Why good design / implementation?

Enhancing the readability and the quality of the design allows
to better understand the structure of the program
to make the program more flexible

→ allowing to adapt the program to new requirements
→ to better find bugs

Implementing larger software is not a linear process (i.e.
Requirements analysis, design, implementation)
Instead it is an evolutionary process

Bit of requirements analysis, bits of design, bits of implementation
Bit of requirements analysis, bits of design, bits of implementation
. . .

Each of these steps provides one with insight to better structure a
system
Don’t underestimate how long a program can live and needs to be
maintained and adapted

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 12 / 81

Introduction

How does one achieve better design?

Write readable and self documenting programs
→ Use self documenting names (e.g. class Person or variable person

instead of class P or px1
→ Other tips can be found in the book Implementation patterns by

Kent Beck and in the book The Pragmatic Progammer by Andrew
Hunt and David Thomas

Create a domain language for your problem and then use it in your
program code
→ Use classes and methods to capture the domain language

Know Design patterns and use them as appropriate
Modularize your Program
→ High cohesion — low coupling

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 13 / 81

Basic Principles of Good Design Duplication

DRY principle

DRY principle
Don’t repeat yourself: Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system.

Problem with duplication
Consistency: Changes need to be applied to each of the duplicates
Changes won’t be executed because changes needed to be done
in too many places

Kind of duplication
Code duplications
Concept duplications
Code / Comments / Documentation
→ Self documenting code
→ Only document ideas, concepts, . . . that are not expressible

(expressed) clearly in the code: e.g. What is the idea behind a
design, what were the design decisions
Example: eUML: Class diagrams == Code

. . .
c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 16 / 81

Basic Principles of Good Design Duplication

Example: Code Duplication

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 18 / 81

Basic Principles of Good Design Duplication

DRY principle

Techniques to avoid duplication
Use appropriate abstractions

Inheritance
Classes with instance variables
Methods with parameters
refactor your software to remove duplications
. . .

to refactor software
Change the structure of the software without changing its functionality

Use generation techniques
generate documention from code

e.g. Javadoc generates HTML documentation from Java source files
e.g. http://java.sun.com/javase/6/docs/api/

generate code from UML models
most modern tools support this for class diagrams in both directions
(i.e. code→ diagram and diagram→ code

. . .
c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 19 / 81

http://java.sun.com/javase/6/docs/api/

Basic Principles of Good Design Simplicity

KISS principle

KISS principle
Keep it short and simple (sometimes also: Keep it simple, stupid)

Try to use the simplest solution first
Make complex solutions only if needed

Strive for simplicity
Takes time!!
refactor your software to make it simpler

Antoine de Saint Exupéry
”It seems that perfection is reached not when there is nothing left to
add, but when there is nothing left to take away”.

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 21 / 81

Patterns Introduction

What is a pattern and a pattern language?

Pattern
A pattern is a solution to a problem in context

A pattern usually contains a
discussion on the problem,
the forces involved in the problem,
a solution that addresses the problem,
and references to other patterns

Pattern language
A pattern language is a collection of related patterns

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 24 / 81

Patterns Introduction

History of patterns

Christopher Alexander (architect)
Patterns and pattern language for constructing buildings / cities

→ Timeless Way of Building and A Pattern Language: Towns,
Buildings, Construction (1977/79)

Investigated for use of patterns with Software by Kent Beck and
Ward Cunningham in 1987
Design patterns book (1994)
Pattern conferences, e.g. PloP (Pattern Languages of
Programming) since 1994
Portland Pattern repository
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 25 / 81

http://c2.com/cgi/wiki?PeopleProjectsAndPatterns

Patterns Introduction

What is a design pattern?

Design patterns book by ”Gang of Four” (Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides)
A set of best practices for designing software

E.g. Observer pattern, Factory pattern, Composite pattern, . . .

Places to find patterns:
Wikipedia http://en.wikipedia.org/wiki/Design_
pattern_(computer_science)
Portland Pattern repository
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)
Wikipedia http://en.wikipedia.org/wiki/Category:
Software_design_patterns

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 26 / 81

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Patterns Observer Pattern

Observer Pattern

Observer Pattern
Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically.

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 28 / 81

Patterns Observer Pattern

Observer Pattern

The basic idea is that the object being observed does not know
that there are observers
→ observers can be added independently on the observable (also

called subject)
→ new types of observers can be created without changing the subject

The observer pattern is used often in GUI programming to
connect the presentation of a model with the model itself

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 29 / 81

Patterns Observer Pattern

Observer Pattern

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 30 / 81

Patterns Observer Pattern

Observer Pattern

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 31 / 81

Patterns Observer Pattern

Implementation in Java

Support from the class library: One abstract class and interface:
Interface java.util.Observer

Implement update(Observable o, Object aspect)
Class java.util.Observable

Provides connection to the observers
Provides methods addObserver(Observer o),
deleteObserver(Observer o)

To add and delete observers
setChanged()

Marks the observable / subject as dirty
notifyObservers(), notifyObservers(Object aspects)

Notify the observers that the state of the observable has changed
The aspect can be used to say what has changed in the observable

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 32 / 81

Patterns Observer Pattern

Example: Stack with observers

public class Stack<E> extends Observable {
List<E> data = new ArrayList<E>();

void push(Type o) {
data.add(o);
setChanged();
notifyObserver("data elements");

}

E pop() {
E top = data.remove(data.size())’
setChanged();
notifyObserver("data elements");

}

E.top() {
return data.get(data.size());

}

int size() {
return data.size();

}
...

}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 33 / 81

Patterns Observer Pattern

Example: Stack observer

Observe the number of elements that are on the stack.
Each time the stack changes its size, a message is printed on the console.
class NumberOfElementsObserver() implements Observer {

Stack<E> stack;

NumberOfElementsObserver(Stack<E> st) {
stack = st;

}

public void update(Observable o, Object aspect) {
System.out.println(subject.size()+" elements on the stack");

}
}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 34 / 81

Patterns Observer Pattern

Example: Stack observer

Adding an observer

....
Stack<Integer> stack = new Stack<Integer>;
NumberOfElementsObserver observer =

new NumberOfElementsObserver(stack);
stack.addObserver(observer);
stack.push(10);
stack.pop();
...
stack.deleteObserver(observer)
...

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 35 / 81

Patterns Composite Pattern

Composite Pattern

Composite Pattern
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects and
compositions of objects uniformly.

Stykkelister example from the first lecture

Part

*

0..1

Assembly

Component

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 37 / 81

Patterns Composite Pattern

Example: Graphics

Class Diagram

Instance diagram

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 38 / 81

Patterns State Pattern

State Pattern

State Pattern
Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.

This pattern delegates the behaviour of one object to another
object

*

State

request1
request2

AClass

request1
request2
...
changeState

State1

request1
request2

State2

request1
request2

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 40 / 81

Patterns State Pattern

Example

Task: Implement a control panel for a safe in a dungeon
The should be visible only when a candle has been removed
The safe door opens only when the key is turned after the candle
has been replaced again
If the key is turned without replacing the candle, a killer rabbit is
released

SecurePanelController

candleRemoved
keyTurned
closeSafe
revealLock
releaseKillerRabbit

Safe

open
close

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 41 / 81

Patterns State Pattern

Example (cont.)

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 42 / 81

Patterns State Pattern

Transitions (UML 2.0)

General form
trigger [guard]/effect

Triggers (includes events)
Call Event

messages being sent (e.g. class / interface operation)
Can have parameters that can be used in the guard or in the effect

. . .
→ The event that needs to have happened to fire the transition

Guard
boolean expression

→ Needs to evaluate to true for the transition to fire
Effect

Sending a message to another object or self
Changing the state of an object (e.g. variable assignment)

→ The effect that happens when the transition fires

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 43 / 81

Patterns State Pattern

Alternative Implementation

The current state is stored in a variable
Events are method calls

public class SecretPanelController {
enum states { wait, lock, open, finalState };
states state = states.wait;

public void candleRemoved() {
switch (state) {
case wait:

if (doorClosed()) {
state = states.lock;
break;

}
}

}

public void keyTurned() {
switch (state) {
case lock:

if (candleOut()) {
state = states.open;

} else
{

state = states.finalState;
releaseRabbit();

}
break;

}
} ... }

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 44 / 81

Patterns State Pattern

Implementation using the state pattern

The current state is an object of a subclass of SecretPanelState
Events are methods whose implementation is delegated to the
state object

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 45 / 81

Patterns Visitor Pattern

Visitor Pattern

Visitor Pattern
Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

The object structure (e.g. based on a composite pattern) provides
access to itself through a set of methods

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 47 / 81

Patterns Visitor Pattern

Example: compute costs for stykkelister

Component

computeCost()

{int costs = 0;
 foreach (Component c : components) {
 costs += c.computeCost();
 }
 return costs;
}

*

{return cost}

Assembly

computeCost()

Part
cost
computeCost()

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 48 / 81

Patterns Visitor Pattern

Example: compute costs as a visitor

Visitor

visitPart(Component c)
visitAssembly(Component c)

Function

visitPart
visitAssembly

ComputeCosts

visitPart(Component c)
visitAssembly(Component c)

{ int costs = 0;
 foreach (Component co : c.getComponents()) {
 costs += co.accept(this);
 }
 return costs;
}

{v.visitAssembly(this)}

{return c.getCost()}

{v.visitPart(this)}

Component

acceptVisitor(Visitor v) *

Assembly

acceptVisitor()

Part
cost
acceptVisitor(Visitor v)

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 49 / 81

Patterns Visitor Pattern

Visitor pattern

The trick of the visitor is to use double dispatch
add type information to the method name

acceptVisitor→ visitPart, visitAssembly

Use the visitor pattern if
The functions don’t belong to the concept of the object
structure:e.g. generator functions
One should be able to do traverse an object structure without
wanting to add operations to the object structure
One has several functions almost the same. Then one can use the
visitor pattern and inheritance between the visitors do define slight
variants of the functions (e.g. only overriding acceptPart)

Do not use it
if the complexity of the visitor pattern is not justified
if the functions belongs conceptually to the object structure
If the flexibility of the visitor is not needed, e.g.. if one only wants to
add one function

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 50 / 81

Patterns Summary

Summary Design Patterns

Original Gang of Four book:
Creational Patterns

Abstract Factory, Builder, Factory Method, Prototype, Singleton
Structural Patterns

Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy
Behavioral Patterns

Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Observer, State, Strategy, Template Method, Visitor

There are more: Implementation Patterns, Architectural Patterns,
Analysis Patterns, Domain Patterns . . .

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 52 / 81

High cohesion — low coupling High cohesion — low coupling

Low Coupling

Low coupling

An object / class is connected only to a few other classes
It fullfils its repsonsibility by delegating responsibility to other
objects

High coupling: Every class is connected with every class

A B

D E

C

F

→ Difficult to change / exchange classes: dependency to all other
classes need to be considered

Low coupling: Classes are only connected to few other classes
A

B

D

E

C

F

→ Easy to change / exchange classes
c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 55 / 81

High cohesion — low coupling High cohesion — low coupling

High Cohesion

High Cohesion

Groups methods / attributes / classes with a common goal /
functionality

→ E.g. A class groups a set of a related methods and attributes
→ an object is self contained and represents an entity

High cohesion & low coupling are a corner stone of good design
Low coupling reduces the dependency on other objects

It is easier to change / exchange one object when it is only connected
to a limited number of other objects

High cohesion supports low coupling by grouping related
functionality and data

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 56 / 81

High cohesion — low coupling High cohesion — low coupling

Example: High Cohesion

Left side violates high cohesion:
Attributes for address and method for printing the address do not
belong to the Person or the Company concept

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 57 / 81

High cohesion — low coupling High cohesion — low coupling

Layered Architecture

Low coupling between
layers

Message flow is
directed from higher
layers to lower layers
but not vice versa
Most messages are
sent to the adjacent
layer

High cohesion within a
layer

A layer groups similar
functionality, e.g. the
User interface /
Presentation layer

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 58 / 81

High cohesion — low coupling Layerd Architecture: Example

Example Vending Machine

Actions
Input coins
Press button for bananas or
apples
Press cancel

Displays
current amount of money
input

Effects
Return money
Dispense banana or apple

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 60 / 81

High cohesion — low coupling Layerd Architecture: Example

Use Case: Buy Fruit

name: Buy fruit
description: Entering coins and buying a fruit
actor: user
main scenario:

1. Input coins until the price for the fruit to be selected is reached
2. Select a fruit
3. Vending machine dispenses fruit

alternative scnearios:
a1. User inputs more coins than necessary
a2. select a fruit
a3. Vending machine dispenses fruit
a4. Vending machine returns excessive coins

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 61 / 81

High cohesion — low coupling Layerd Architecture: Example

Use Case: Buy Fruit (cont.)

alternative scenarios (cont.)
b1 User inputs less coins than necessary
b2 user selects a fruit
b3 No fruit is dispensed
b4 User adds the missing coins
b5 Fruit is dispensed
c1 User selects fruit
c2 User adds sufficient or more coins
c3 vending machine dispneses fruit and rest money
d1 user enters coins
d2 user selects cancel
c3 money gets returned

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 62 / 81

High cohesion — low coupling Layerd Architecture: Example

Use Case: Buy Fruit (cont.)

alternative scenarios (cont.)
e1 user enters correct coins
e2 user selects fruit but vending machine does not have the fruit

anymore
e3 nothing happens
e4 user selects cancel
e5 the money gets returned
f1 user enters correct coins
f2 user selects a fruit but vending machine does not have the fruit

anymore
f3 user selects another fruit
f4 if money is correct fruit with rest money is dispensed; if money is

not sufficient, the user can add more coins

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 63 / 81

High cohesion — low coupling Layerd Architecture: Example

Presentation Layer: Command Line Interface

Current Money: DKK 5
0) Exit
1) Input 1 DKK
2) Input 2 DKK
3) Input 5 DKK
4) Select banana
5) Select apple
6) Cancel

Select a number (0-6): 5
Rest: DKK 2
Current Money: DKK 0
Dispensing: Apple

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 64 / 81

High cohesion — low coupling Layerd Architecture: Example

Presentation Layer: Command Line Interface
 sd:buy apple

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 65 / 81

High cohesion — low coupling Layerd Architecture: Example

Presentation Layer: Swing GUI

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 66 / 81

High cohesion — low coupling Layerd Architecture: Example

Presentation Layer: Swing GUI

 sd:buy apple

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 67 / 81

High cohesion — low coupling Layerd Architecture: Example

Application Layer

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()

*

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 68 / 81

High cohesion — low coupling Layerd Architecture: Example

Application Logic

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 69 / 81

High cohesion — low coupling Layerd Architecture: Example

Application Logic Implementation

Uses the state pattern discussed before

«enumeration»
Fruit

APPLE
BANANA

VendingMachine
dispensedItem: Fruit
currentMoney: int
totalMoney: int
restMoney: int
input(money: int)
select(f: fruit)
cancel()
~setIdleState()
~dispense(f: Fruit)
~setCurrentStateForFruit(f: Fruit)
~hasFruit(f: Fruit)

1

«interface»
VendingMachineState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

IdleState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

FruitSelectionState

input(m: VendingMachine, money: int)
select(m: VendingMachinef: fruit)
cancel(m: VendingMachine)

1

*

m.setCurrentMoney(m.getCurrentMoney() + i);

if (!m.hasFruit(fruit)) {
 m.setIdleState();
 return;
}
if (m.hasEnoughMoneyFor(fruit)) {
 m.setIdleState();
 m.dispense(fruit);
} e l se {
 m.setCurrentStateForFruit(fruit);
}

m.dispense(null);

super.input(m, i);
if (m.hasEnoughMoneyFor(selectedFruit)) {
 m.setIdleState();
 m.dispense(selectedFruit);
}

m.setIdleState();
super.cancel(m);

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 70 / 81

High cohesion — low coupling Layerd Architecture: Example

Separation Presentation Layer from Application Layer

Presentation layer translates
keyboard events, mouse movements . . . to messages in the
application layer
application specific information as text or graphics
Reacts on events coming from the application layer

e.g. via the observer pattern (e.g. update messages)
also possible: use of event listeners

The presentation does not contain any business logic
Am action performed method does not do any business relevent
computations

Application layer
offers an abstract interface of messages to the presentation layer

e.g. input(int amount); select(Fruit fruit), getDispensedItem(), . . .

implements the business logic
Application logic does not provide any presentation logic

No calling of dialogs, no returning of images etc.

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 71 / 81

High cohesion — low coupling Layerd Architecture: Example

Advantages of the separation

1 Presentation layer can be exchanged/changed easily without
compromising the business logic

2 It is easy to add different presentation layers on top of the same
business logic at the same time

collaborative work: a person working on the application from a Web
interface, the other from a stand-alone application

3 Automatic tests of business logic is easily possible because the
application layer can be tested as any Java program

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 72 / 81

High cohesion — low coupling Application Layer and Automated Tests

Use Case: Buy Fruit

name: Buy fruit
description: Entering coins and buying a fruit
actor: user
main scenario:

1. Input coins until the price for the fruit to be selected is reached
2. Select a fruit
3. Vending machine dispenses fruit

alternative scnearios:
a1. User inputs more coins than necessary
a2. select a fruit
a3. Vending machine dispenses fruit
a4. Vending machine returns excessive coins

. . .

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 74 / 81

High cohesion — low coupling Application Layer and Automated Tests

Functional Test: for Buy Fruit Use Case: Input Data
Sets

Input data set Input property
A Exact coins; enough fruits; first coins, then fruit selection
B Exact coins; enough fruits; first fruit selection, then coins
C Exact coins; not enough fruits; first coins, then fruit selection, then cancel
D Exact coins; not enough fruits; first fruit selection, then coins, then cancel
E More coins; enough fruits; first coins, then fruit selection
F More coins; enough fruits; first fruit selection, then coins
G More coins; not enough fruits; first coins, then fruit selection, then cancel
H More coins; not enough fruits; first fruit selection, then coins, then cancel
I Less coins; enough fruits; first coins, then fruit selection
J Less coins; enough fruits; first fruit selection, then coins
K Less coins; not enough fruits; first coins, then fruit selection, then cancel
L Less coins; not enough fruits; first fruit selection, then coins, then cancel

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 75 / 81

High cohesion — low coupling Application Layer and Automated Tests

Functional Test for Buy Fruit Use Case: Test Cases

Input data set Contents Expected Output
A 1,2; apple apple dispensed
B Apple; 1,2 apple dispensed
C 1,2; apple; cancel no fruit dispensed; returned DKK 3
D Apple; 1,2; cancel no fruit dispensed; returned DKK 3
E 5, apple apple dispensed; returned DKK 2
F Apple; 5 apple dispensed; returned DKK 2
G 5, apple; cancel no fruit dispensed; returned DKK 5
H Apple; 5; cancel no fruit dispensed; returned DKK 5
I 5; banana no fruit dispensed; current money shows 5
J Banana; 5,1 no fruit dispensed; current money shows 6
K 5,1; banana; cancel no fruit dispensed; returned DKK 6
L Banana; 5,1;cancel no fruit dispensed; returned DKK 6

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 76 / 81

High cohesion — low coupling Application Layer and Automated Tests

Manual vs Automated Tests

The test cases can be tested manually
Open the application
Input the data according to the input data set description
Check that the output is the expected one

But also automatically
There are tools that execute the user interface automatically

But they have a lot of problems: e.g. don’t tolorate additional GUI
elements or changed GUI elements

Easier: test the application layer automatically
application layer works with plain Java methods

→ they can be exercised using, e.g., JUnit
Presentation independent; focuses on the business logic

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 77 / 81

High cohesion — low coupling Application Layer and Automated Tests

Functional Test for Buy Fruit Use Case: JUnit Tests

public void testInputDataSetA() {
VendingMachine m = new VendingMachine(10, 10);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.selectFruit(Fruit.APPLE);
assertEquals(Fruit.APPLE, m.getDispensedItem());

}

public void testInputDataSetB() {
VendingMachine m = new VendingMachine(10, 10);
m.selectFruit(Fruit.APPLE);
m.input(1);
m.input(2);
assertEquals(0, m.getCurrentMoney());
assertEquals(Fruit.APPLE, m.getDispensedItem());

}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 78 / 81

High cohesion — low coupling Application Layer and Automated Tests

Functional Test: JUnit Tests (cont.)

public void testInputDataSetC() {
VendingMachine m = new VendingMachine(0, 0);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.selectFruit(Fruit.APPLE);
assertEquals(null, m.getDispensedItem());
m.cancel();
assertEquals(null, m.getDispensedItem());
assertEquals(3, m.getRest());

}

public void testInputDataSetD() {
VendingMachine m = new VendingMachine(0, 0);
m.selectFruit(Fruit.APPLE);
m.input(1);
m.input(2);
assertEquals(3, m.getCurrentMoney());
m.cancel();
assertEquals(null, m.getDispensedItem());
assertEquals(3, m.getRest());

}

...

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 79 / 81

Summay

Summary

There is a difference between good and bad design
Good design is important

Some basic principles:
DRY, KISS

Patterns capture knowledge
→ Design patterns capture common object oriented design principles

Low Coupling and High Cohesion
→ Leads to modularized / object oriented design

Layered Architecture
→ application of the low coupling and high cohesion principle

supports independence of application from UI
supports automated tests

→ Good design is a life long learning process
e.g. when or when not to apply certain patterns
think about what and why you are doing it!

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 81 / 81

	Introduction
	Basic Principles of Good Design
	Duplication
	Simplicity

	Patterns
	Introduction
	Observer Pattern
	Composite Pattern
	State Pattern
	Visitor Pattern
	Summary

	High cohesion --- low coupling
	High cohesion --- low coupling
	Layerd Architecture: Example
	Application Layer and Automated Tests

	Summay

