
Systematic Software Test (II)
Testing OO Software

Anne Haxthausen

Informatics and Mathematical Modelling

Technical University of Denmark

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 1

Overview

• Goal: To give some inspiration for how you can design tests for
object-oriented software.

• For the implementation of tests we recommend tools like JUnit.

• In these foils we discuss how to transfer the theory from
Sestoft’s note to OO software.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 2

Testing a collection of classes

Testing a system built from a collection classes.

1. Unit test: Make a test for each class.

2. System test: Make a test of the whole system.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 3

Testing a single class C

Test each of the constructors and methods:

1. design test cases

2. execute the test cases

3. evaluate the results

Step 2 (and possibly also step 3) should be done by a test program.
You have to design and implement such a program or use existing
tools like JUnit. In this course you have to do the latter.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 4



Testing a method m of a class having no fields

Test case = input + expected output
Success criteria: m(input) is equal to expected output

A systematic (functional or structural) test of the methods can be
planned (using tables) and implemented as explained in the notes
by Peter Sestoft and the other collection of overheads about test.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 5

Testing a method of a class having fields

However, if the class under test contains field variables the situation
is more complicated as:

• the effect of a method invocation may not only depend on the
input (actual parameters), but also on the state in which it is
invoked, and,

• the effect of a method invocation may not only be to return a
value (if any at all), but also to change the state.

Test case = pre state + input + expected output + expected post state

Success criteria:
m(input) is equal to expected output &&
post state is equal to expected post state

Definition: a state is a particular contents of the field variables.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 6

Example

class Counter {
private int counter;

public Counter() { counter = 0; }

public int getCounter() { return counter; }

public int increase(int amount) {
counter = counter + amount;
return counter;

}
}

In the state where counter is 0:
increase(3) will return 3, and change the state to one in which
counter is 3.
In the state where counter is 2:
increase(3) will return 5, and change the state to one in which
counter is 5.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 7

Test case tables

The ideas from the notes by Sestoft can be generalized by adding
two extra columns in the test case tables:

• pre state

• expected post state

test case id pre state input expected output expected post state

...

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 8



How can we express the pre and post states?

Approach one: Refer explicitly to the field using their names.

Test case table for increase method in COUNTER:
test case id pre state input expected output expected post state

(counter) (amount) (counter)

case 1 0 3 3 3

case 2 3 4 7 7

Implementation of test case 1:

Counter c = new Counter(); //now c.counter == 0
assertEquals(c.increase(3), 3);
assertEquals(c.counter, 3);

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 9

How can we express the pre and post states?

Approach one does not always suffice:

• If the test case is implemented in a class different from the class
under test, we can’t access the private state components (fields
like counter) directly.

• In a functional test, we do not know anything about which fields
exist.

In the first case there is a workaround using the Java Reflection API,
see:

http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 10

How can we express the pre and post states?

Approach 2:
Use query methods returning informations about the state.

Test case table for increase method in COUNTER:
test case id pre state input expected output expected post state

(getCounter()) (amount) (getCounter())

case 1 0 3 3 3

case 2 3 4 7 7

Implementation of test case 1:

Counter c = new Counter(); //now c.getCounter() == 0

assertEquals(c.increase(3), 3);
assertEquals(c.getCounter(), 3);

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 11

Designing test cases

In a functional test, the test cases must cover “typical” as well as
“extreme” input and pre states. Use cases and pre&post conditions
are a good base for making the test cases.

In a structural test, there must be enough test cases to make sure
that all parts of the code have been executed in the way described in
the note by Sestoft.

Besides making test case tables as shown above you should also
make additional survey tables that give a survey of what is tested in
which test cases.

If the state space is large (either because there are many fields or
because the data structures of the fields are large) it may be too
cumbersome to write up the test case tables.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 12



From pre and post conditions to test cases

Given a method specified by a pre and a post condition.

Test cases are almost as before, but instead of expected output and
expected post state, we only expect the post condition to be true.

Create test cases having input and pre state making the pre
condition true, and then check whether actual output and actual post
states satisfy the post condition.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 13

From use cases to test cases in a system test

Use cases are a good base for making functional test cases in a
system test.

Idea: make a test case for each scenario (main success and
extensions).

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 14

From use cases to test cases, example

A marriage bureau has a directory containing name (at most 30 chars
long), sex, phone, and birthday for each customer.
It should be possible to add new customers, ... .

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 15

From use cases to test cases, example

A use case for the marriage bureau:
Name: AddCustomer
Main Success Scenario:

1. Secretary chooses function “addCustomer”.

2. Secretary gives name, sex, phone, and birthday of a new customer.

3. System adds the customer.
Extensions:

2a. Name is too long: customer is not added.

2b. Name is not new: customer is not added.

2c. Birthday not legal: customer is not added.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 16



From use cases to test suites for AddCustomer

Survey table:

Input property Test case id

typical, correct input 2

name too long 2a

name not new 2b
birthday not legal 2c

Test case table:
Test case id Input (name, sex, phone, birthday) Expected output

2 ("Bente Hansen", true, 12345678, 1980) true

2a ("Peter Hansen Nielsen ... Gormsen Petersen", false, 12345678, 1980) false

2b ("Bente Hansen", true, 12345678, 1980) false

2c ("Henrik Pedersen", false, 12345678, 12345) false

Exercise: add info about pre and post states to the test case table.

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 17

From use cases to test cases, example

Assume that you have implemented a MarriageAgency class
providing the required functionality including a method:

boolean AddCustomer(String name, boolean sex, int phone, int birthday)}

Implementation of test cases:
public void testAddCustomer(){

MarriageAgency ma = new MarriageAgency();
/* test case 2: main success scenario */
assertTrue(ma.addCustomer("Bente Hansen", true, 12345678, 1980));

/* test case 2a: name too long */
assertFalse(ma.addCustomer(

"Peter Hansen Nielsen Jensen Joergensen Mogensen Gormsen Petersen",
false, 12345678, 1980));

/* test case 2b: name not new */
assertFalse(ma.addCustomer("Bente Hansen", true, 12345678, 1980));

/* test case 2c: birthday not legal */
assertFalse(ma.addCustomer("Henrik Pedersen", false, 12345678, 12345));

}

02161 Software Engineering 1 c©Haxthausen, Spring 2010 – p. 18


	Overview
	Testing a collection of classes
	Testing a single class {	t C}
	Testing a method {	t m} of a class having no fields
	Testing a method of a class having fields
	Example
	Test case tables
	How can we express the pre and post states?
	How can we express the pre and post states?
	How can we express the pre and post states?
	Designing test cases
	From pre and post conditions to test cases
	From use cases to test cases in a system test
	From use cases to test cases, example
	From use cases to test cases, example
	From use cases to test suites for AddCustomer
	From use cases to test cases, example

