
Software Engineering I (02161)
Week 2: Class diagrams part 1

Hubert Baumeister

Informatics and Mathematical Modelling
Technical University of Denmark

Spring 2010

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 2 / 63

From Requirements to Design

Activities in Software Developement

Understand and document what kind of the software the customer
wants
→ Requirements Analysis

Determine how the software is to be built
→ Design

Build the software
→ Implementation

Validate that the software solves the customers problem
→ Testing
→ Verification
→ Evaluation: e.g. User friendlieness

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 4 / 63

From Requirements to Design

From Requirements to Design

Problem
Given a requirements model consisting of:

1 use case diagram
2 detailed use case descriptions
3 glossary
4 non functional requirements

how do I get a system design consisting of
a class diagram with associations, attributes, and operations?

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 5 / 63

From Requirements to Design

From Requirements to Design: Solution

Design process
1 The terms in the glossary give first candidates for classes,

attributes, and operations
2 Take one use cases

a Take one main or alternative scneario
i Realize that scenario by adding new classes, attributes, associations,

and operations so that you design can execute that scenario

b Repeat step a with the other scenarios of the use case

3 Repeat step 2 with the other use cases

Techniques that can be used
Grammatical analysis of the text of the scenario
→ nouns are candidate for classes and attributes; verbs are candidates

for operations, and adjectives are candidates for attributes

CRC cards (= Class Responsibility Collaboration cards)

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 6 / 63

CRC Cards

Introduction CRC Cards

Class Responsibility Collaboration (CRC)
CRC cards were developed by Ward Cunningham in the late 80’s
Can be used for different purposes

Analyse a problem domain
Discover object-oriented designs

Learn to think objects
→ Objects

have structure and behaviour
→ both need to be considered at the same time

Literature
http://c2.com/doc/oopsla89/paper.html
Martin Fowler: UML Destilled pages 62—63

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 8 / 63

http://c2.com/doc/oopsla89/paper.html

CRC Cards

CRC Card

Class
Can be an object of a certain type
Can be the class of an object
Can be a component of a system
Index cards are used to represent classes (one for each class) (I
use A6 paper instead of index cards)

Responsibilities
Corresponds roughly to operations and attributes
Somewhat larger in scope than operations
”do something”
”know something”

Collaborations
With whom needs this class to collaborate to realize its
responsibilities

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 9 / 63

CRC Cards

CRC Card Template

A larger example
http://c2.com/doc/crc/draw.html

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 10 / 63

http://c2.com/doc/crc/draw.html

CRC Cards

Process I

Starting point
List of use-cases scenarios

Should be as concrete as possible

A group of up to 6 people (but can also be done alone)
Brainstorming

Initial set of Classes (just enough to get started)
Assign Classes to persons

Execute Scenarios
Simulate how the computer would execute the scenario
Each object/class is represented by one person
This person is responsible for executing a given responsibility

This is done by calling the responsibilities of other objects/persons he
collaborates with

objects/classes can be created
responsibilitites can be added
collaborations can be added

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 11 / 63

CRC Cards

Library Example: Problem Description and Glossary

Problem Description
Library system for checking out, returning, and searching for books.
No more than 5 books can be loaned by one borrower at a time.
And if a book is returned after its overdue date, a fine has to be
paid.

Glossary
Librarien

The object in the system that fulfills User requests to check out,
check in, and search for library materials

Book
The set of objects that represent Users who borrow items from the
library

Borrower
The set of objects that represent Users who borrow items from the
library

. . .
c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 12 / 63

CRC Cards

Library Example: Use Case Diagram

Use Cases

User

LibrarySystem

check out book

return book

search for book

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 13 / 63

CRC Cards

Library Example: Detailed Use Case Check Out Book

Name: Check Out Book
Description: The user checks out a book from the library
Actor: User
Main scenario:

1 A user presents a book for check-out at the check-out counter
2 The system registers the loan

Alternative scenarios:
The user already has 5 books borrowed

2a The system denies the loan
The user has one overdue book

2b The system denies the loan

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 14 / 63

CRC Cards

Example II

Set of initial CRC cards
Librarien

The object in the system that fulfills User requests to check out, check
in, and search for library materials

Borrower
The set of objects that represent Users who borrow items from the
library

Book
The set of objects that represent items to be borrowed from the library

Use case Check out book main scenario
”What happens when Barbara Stewart, who has no accrued fines
and one outstanding book, not overdue, checks out a book entitled
Effective C++ Strategies+?”

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 15 / 63

CRC Cards

Library Example: All CRC cards

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 17 / 63

CRC Cards

Process: Next Steps

Review the result
Group cards

by collaborations
shows relationship between classes

Check responsibilities
Check correct representation of the domain
Refactor if needed

Transfer the result
UML class diagrams

Responsibilities map to operations and attributes/associations
Collaborations map to associations and dependencies

The executed scenarios to UML interaction diagrams

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 18 / 63

CRC Cards

Example: Class Diagram (so far)

0..1 *

Borrower

canBorrow

Book

isOverdue
checkOut(b:Borrower)
calculateDueDate

Librarien

checkOutBook(b:Book)

Date

compare(d:Date)

* *

0..1 dueDate

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 19 / 63

CRC Cards

Example: Sequence Diagram for Check-out book

 Check Out Book Realization

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 20 / 63

CRC Cards

Summary

Further scenarios give more detail
The scenarios are now quite easy to implement
CRC process can be repeated on a more detailed level, e.g., to
design the database interaction, or user interface
Helps one to think in objects (structure and behaviour)
Humans playing objects help to get a better object-oriented design
as it helps delegating responsibilities

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 21 / 63

Object-orientation

Computing the price of an order

Task
Calculate the price of an order
Take into account if the customer has any discounts

Initial CRC cards
Customer

knows name

knows discount info

Product

knows price

knows name

Order

knows order lines

knwos custommer

Order Line
Customer

calculate price

OrderLine

knows quantity

knows product
Prodcut

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 23 / 63

Object-orientation

Two possible solutions: Centralised Control

The order computes the price by asking its collaborators about
data

→ centralised control
c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 24 / 63

Object-orientation

Centralised Control: CRC cards

Customer

knows name

knows discount info

OrderLine

knows quantity

knows product
Prodcut

Product

knows price

knows name

Order

knows order line
knows customer

Order Line
Product
Customer

calcuate price

calcuate base price

calcuate discounts

Only class Order has any interesting behaviour
OrderLine, Customer, and Product are purly data classes

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 25 / 63

Object-orientation

Two possible solutions: Distributed Control

The order computes the price by delegating part of the price
calculation to order line and customer

→ distributed control

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 26 / 63

Object-orientation

Distributed Control: CRC cards

OrderLine

knows quantity

knows product
Prodcut

calculate price

Product

knows price

knows name

get price for quantity

Customer

knows name

knows discount info

calculate discount for order

Order

Order

knows base price

knows order line
knows customer

Order Line
Customer

calcuate price

calcuate discounts

More customer types can be
added
Each computing the discount
differently

The product know
calculates the price
depending on quantity
One could now have
products that are
cheaper the more one
buys

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 27 / 63

Object-orientation

Centralised vs Distributed Control

Centralised control
One method does all the work
The remaining objects are merely data objects and usually don’t
have their own behaviour
Typical for a procedural programming style

Distributed control
Objects collaborate to achieve one task

”Instead of doing myself the work, I delegate work to other object”

Each object in a collaboration has behaviour (= is a ”real” object)
Typical object-oriented style

Each object has its own responsibilities
Facilitates polymorphism

Object-Orientation
Distributed Control is a characteristic of object orientation

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 28 / 63

Class Diagrams Introduction

Class Diagram I

Class diagrams can be used for different purposes
1 to give an overview over the domain concepts

as part of the requirements analysis (e.g. a graphical form
representation supplementing the glossary)

2 to give an overview over the system
as part of the design of the system

3 to give an overview over the systems implementation
4 . . .

Level of detail of a class description depends on the purpose of the
class diagram
Domain Modelling : typically low level of detail

...
Implementation : typically high level of detail

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 31 / 63

Class Diagrams Introduction

Class Diagram Example

Associations Name of the association Multiplicities

Class

Attributes

Reading direction

Generalization

Basic concepts of class diagrams
Classes with attributes and operations
Associations with multiplicities and possibly navigability
Generalization of classes (corresponds in principle to subclassing
in Java)

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 32 / 63

Class Diagrams Introduction

Why class diagrams?

Example of a class diagram

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 33 / 63

Class Diagrams Introduction

Why class diagrams? (cont.)

The same information as in the class diagram presented as Java
source code
But with the class diagram the relationship between the classes is
easier to understand

public class Assembly
extends Component {

public double cost() { }
public void add(Component c) {}
private Collection<Component>

components;
}

public class CatalogueEntry {
private String name = "";
public String getName() {}
private long number;
public long getNumber() {}
private double cost;
public double getCost() {}
}

public abstract class Component {
public abstract double cost();
}

public class Part extends Component {
private CatalogueEntry entry;
public CatalogueEntry getEntry() {}
public double cost(){}
public Part(CatalogueEntry entry){}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 34 / 63

Class Diagrams Classes

Classes

A class describes a collection of objects that have a common
characteristics regarding

state (attributes)
behaviour (operations)
relations to other classes (associations and generalisations)

A class ideally should represent only one concept
All the attributes should related to that concept
All the operations should make sense for that concept

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 37 / 63

Class Diagrams Classes

Class Description

KlasseNavn
+navn1: String = "abc"
-navn2: int
#navn3: boolean
-f1(a1:int,a2:String []): float
+f2(x1:String,x2:boolean): void
#f3(a:double): String

Klassens navn

Attributter

Operationer

’-’ : private

’+’ : public

’#’: protected

’navn3’ og ’f1’ er statiske størrelser

private : only visible in the same class
protected : visible also in subclasses
public : visible also in other classes
package : (∼) visible for other classes in the same package

Attributes and operations that are underlined are static
Attributes can be accessed without that an instance of that class
exists
Operations can be called without that an instance of that class
exists

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 38 / 63

Class Diagrams Unidirectional Associations

Associations between classes

A association between classes means, that the objects belonging
to the two classes have knowledge of each other
Associations can be navigable in one direction or two directions
(a.k.a. bidirectional association)

→ this means that knowledge can be only on one side or on two
sides

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 40 / 63

Class Diagrams Unidirectional Associations

Navigable associations in one direction I

Example: Persons and their employers:

Person Firma
* 0..1

every person is associated to an employer (company/firma)
every company has 0, 1, or more (’*’) employees (persons)

The arrow means that a company has knowledge about all employees
(persons)
→ a company object has a reference to all the objects representing

employees
Conversely, a person object does not need to have a reference to
the company object
A × at an arrow denotes that it should not be possible to navigate
in this direction
Navigability in the direction of the arrow
0 and ∗ are called multiplicities or cardinality

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 41 / 63

Class Diagrams Unidirectional Associations

Navigable associations in one direction II

Example: Persons and their employers:

Person Firma
* 0..1

ansatte

a role (here ansatte) describes objects (here persons) at the end
of an association, seen from the objects belonging to the classes
at the opposite end of the (here company)
default role name: name of the associated class (e.g. person)
in an implementation a role name is typically a variable. For
example:

public class Firma
{

private Collection<Person> ansatte;
....

}

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 42 / 63

Class Diagrams Unidirectional Associations

Attributes and Associations

There is in principle no distinction between attributes and
associations
Associations can be drawn as attributes and vice versa

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 43 / 63

Class Diagrams Unidirectional Associations

Attributes versus Associations

When to use attributes and when to use associations?
Associations

When the target class of an association is shown in the diagram
The target class of an association is a major class of the model

e.g. Part, Assembly, Component, . . .

Attributes
When the target class of an associations is not shown in the
diagram
With datatypes / Value objects

Datatypes consists of a set of values and set of operations on the
values
In contrast to classes are datatypes stateless
e.g. int, boolean, String . . .

Library classes
However final choice depends on what one wants to express with
the diagram

E.g. Is it important to show a relationship to another class?

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 44 / 63

Class Diagrams Unidirectional Associations

Multiplicities

At the end of associations (or at other places) one often denotes
how often an object can appear. E.g. how many employees a
company can have
These denotations are called multiplicities or cardinalities.
Typical values used as cardinalities:

values meaning
0 0
1 1
m..n integer interval m to n (m and n inclusive)
* 0, 1, 2, . . .
m..* m, m + 1, m + 2, m + 3, . . .

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 45 / 63

Class Diagrams Bi-directional associations

Bi-directional associations

Person Firma
* 0..1

* *

ansatte

kunde*barn

2forældre

when associations don’t have any arrows, can this be understood
as bi-directional, i..e. navigable in both directions, where on has
decided not to show navigability, e.g.

every person object has a reference to his employer
every company object has a reference to his employee

or as an under specification of navigability
The example shows also

two different associations between person and companies
and a self-association

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 47 / 63

Class Diagrams Aggregation

Composite Aggregation (I)

A special relation between ”part-of” between objects

DelSammensat

Example: An email consists of a header, a content and a collection of
attachments

1

1

AttachmentHoved Inhold

1

1

*

*

Email

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 49 / 63

Class Diagrams Aggregation

Composite Aggregation (II)

The basic two properties of a composite aggregation are:
A part can only be part of one object
The of the part object is tied to the life of the containing object

→ This results in requirements to the implementation

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 50 / 63

Class Diagrams Aggregation

Composite Aggregation (III)

A part can only be part of one object

Allowed

Not Allowed

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 52 / 63

Class Diagrams Aggregation

Composite Aggregation (IV)

The life of the part object is tied to the life of the containing object
If the containing object dies, so does the part object

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 54 / 63

Class Diagrams Aggregation

Composite Aggregation (V)

But: A part can be removed before the composite object is
destroyed

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 56 / 63

Class Diagrams Aggregation

Composite Aggregation (VI): Styklister

A complex component (assembly) cannot have itself as a
component

→ Styklister can therefore be modelled using aggregation

Part

*

0..1

Assembly

Component

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 57 / 63

Class Diagrams Aggregation

Shared Aggregation

Shared Aggregation
General ”part of” relationship
Notation: empty diamond

”Precise semantics of shared aggregation varies by application
area and modeller.” (from the UML 2.0 standard)

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 58 / 63

Summary

Summary

From Requirements to Design
Class Responsibility Collaboration (CRC) cards
Object-orientation and distributed control

Introduction to Class Diagrams
Classes
Associations

uni- / bi-directional
aggregation and composition

Next week
Implementing class diagrams
More class diagram concepts

c©2010 H. Baumeister (IMM) Software Engineering I (02161) Spring 2010 60 / 63

	From Requirements to Design
	CRC Cards
	Object-orientation
	Class Diagrams
	Introduction
	Classes
	Unidirectional Associations
	Bi-directional associations
	Aggregation

	Summary

