
02161: Software Engineering I
Week 9: Version Control, Software Development Process, and

Project Introduction

Hubert Baumeister

Informatics and Mathematical Modelling
Technical University of Denmark

Spring 2008

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 2 / 38



Contents

1 Version control

2 Software Development process

3 Introduction to the project

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 3 / 38



Version control

Contents

1 Version control
Introduction
Use Cases
How to use CVS with Eclipse

2 Software Development process

3 Introduction to the project

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 4 / 38



Version control Introduction

What is version control?

Version Control
”Revision control (also known as version control (system) (CVS),
source control or (source) code management (SCM)) is the
management of multiple revisions of the same unit of information”
Wikipedia

Stores versions of a file (e.g. a source file)
Allows to retrieve old versions
Allows to compare different versions
Allows to merge different versions (e.g. to different versions from
two different programmers)

→ Is used in projects to
for concurrent development of software
→ each programmer works on his version of the file: The results need to

be merged
experiment with the system (one can go always back to an earlier
version)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 5 / 38



Version control Introduction

CVS

CVS
Concurrent Versions System

Originally a set of command line tools
→ But there exist ”nicer” interfaces: e.g. Eclipse

A set of files and each file has a tree of ”versions”
In principle each file is treated separately from each other

→ use tagging to indicate that a set of files belong together to, e.g.
form a version/release of a software package

→ branching allows to have parallel versions

Implemented by storing the differences between the file versions
(and not whole files)
CVS stores its file in a central repository

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 6 / 38



Version control Use Cases

What are the use cases of version control / CVS?

Creating a CVS repository
Creating a project within a CVS repository
Checking out a project from a CVS repository
Updating a file from a CVS repository

Comparing with previous versions
Merging changes (note: only files with the ASCII attribute can be
merged)

Committing changes
→ fails if someone has changed the repository file
→ requires to to an update, fixing all the conflicts, and then committing

again

Tagging versions
Branching a version
Merging a branch

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 7 / 38



Version control How to use CVS with Eclipse

Creating a repository

1. Go to http://cvs.gbar.dtu.dk

2. Login using students number and password.
3. Select ”create new repository”
4. Choose a name, eg. 02161
5. Click on the newly generated repository and add the other student

numbers from the group with the button ”Add CVS user from DTU”

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 8 / 38

http://cvs.gbar.dtu.dk


Version control How to use CVS with Eclipse

Creating a project within a CVS repository

From within Eclipse, select a project in the package explorer and
then choose Team→share project and create a new
repository location
Fill out the form

Click next, mark ”Use project name as module name”, click next
and finish

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 9 / 38



Version control How to use CVS with Eclipse

Checking out a project from a CVS repository

Open the ”CVS Repository Exploring” perspective
(Window→open perspective→other
If not present, create a new repository location selecting
new→repository location in the right button menu
Open the repository location and then HEAD to get to the projects
for that location (use Branches and Versions to get to project
branches and project versions)
Right click and then check out the project. You can use as project
name a new name or the name of the project in the CVS
repository

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 10 / 38



Version control How to use CVS with Eclipse

Package Explorer Team Menu Project

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 11 / 38



Version control How to use CVS with Eclipse

Update a project from a CVS repository

Copies all the changes which are in the repository to the current
version of the local files

If the local files have not been modified after the last update /
check out, the local files are overwritten
If the local files are modified, then they are merged
→ Merging happens only for files marked with the ASCII property;

Other files will be overwritten and the local files will be copied to a
different name

Use the team menu to change the ASCII/Binary property
→ Merging might fail. Then the local file will contain both versions, the

repository and the local version
→ Use the compare with menu to check for conflicts

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 12 / 38



Version control How to use CVS with Eclipse

Package Explorer Compare With Menu

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 13 / 38



Version control How to use CVS with Eclipse

Compare result: Compare with latest from HEAD

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 14 / 38



Version control How to use CVS with Eclipse

Committing changes to a CVS repository

Use commit from the team menu
You are required to give a comment
Commit fails if some else committed changes after your last
update
→ Resolve this by updating, repairing any conflicts, and then

committing again
A good idea is to do an update before each commit

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 15 / 38



Software Development process

Contents

1 Version control

2 Software Development process
Introduction
Project Planning
Project Plan Example
Executing a plan

3 Introduction to the project

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 16 / 38



Software Development process Introduction

Software Development Process

Basic steps when creating software
Plan the project
Understand the problem
Build the solution
Test the solution
Maintain the solution

In a lot of cases understanding the problems requires building the
solution

Only in the interplay between trying to understand the problem and
trying to find a solution and testing it, one begins to really
understand the project

→ Try to get feedback as early as possible
Show the customer your models, UI mock ups, implementations, tests
as early as possible and as often as possible
But also yourself, you need to get feedback from building the various
models, implementations, and tests

→ ”Whenever you write a model, code, test, . . . , you learn more about
the problem and its solution”

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 17 / 38



Software Development process Introduction

Software Development Process

Each of the steps has its associated set of techniques
Understand the problem:

Build use cases
Interview the customer
create a domain language (glossary, class digram containing the
domain terminology and its relationship, scenarios, . . . )
. . .

Build the system
Use of class diagrams, sequence diagrams, state machines
Use of patterns
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 18 / 38



Software Development process Introduction

Software Development Process

However, the techniques can be applied in different orders
→ Different software development processes

e.g. Waterfall and Iterative processes (e.g. Rational Unified
Process (RUP) or Extreme Programming (XP))

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 19 / 38



Software Development process Introduction

Waterfall model

An activity has to terminate before the next activity begins
→ No feedback possible from the later activities
→ Takes too long time for the system to be build which does not allow

the customer to give feedback

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 20 / 38



Software Development process Introduction

Iterative Processes: E.g. Rational Unified Process

Inception, Elaboration, Construction, Transition corresponds to
Plan the project, understand the problem, build the solution, test
the solution, maintain the solution

All activities occur throughout the project
After each iteration, the customer sees the product and gives
feedback

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 21 / 38



Software Development process Project Planning

Techniques for planning your project 1

Step 1 Determine a set of scenarios (aka User Stories or Use
Case scenarios) that your system should be able to do

Usually comes from the problem description
Do a brain storming on the requirements (use cases)

What are the scenarios? (success, failure, . . . )
Is the set of use cases complete?

Use case
A collection of scenarios with a common goal

Usually the common goal represents a functionality of the system
Each functionality can have different scenarios: success, failure, . . .

User Story
A story about the use of the system told from the viewpoint of the
user

This is more like an end-to-end story
Can include different use case scenarios
A user story can be a use case scenario

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 22 / 38



Software Development process Project Planning

Techniques for planning your project 2

Step 2 Do a brain storming on the intended architecture of the
system (usually, the customer has some requirements here: e.g.
implemented as a Web application . . .

Only a rough idea is needed
How many interacting programs?
Where do the programs run?
How do they communicate?

Step 3 Estimate the User Stories
How long, in ideal man hours, do you think you need for
implementing the user story?
Multiply this with a load factor of 2 to get the real man hours
This estimation includes

Drawing all the diagrams
Documenting the use case scenarios involved
Designing (class diagrams, sequence diagrams)
Implementing
Testing
Updating the report
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 23 / 38



Software Development process Project Planning

Techniques for planning your project 3

Step 4 Determine how long an iteration should take: e.g. 1 week
This gives you the amount of hours you have available in a week

Step 5 Assign user stories to iterations
Basically based on customer value

if two user stories have the same value to the customer, prefer the
one, from which you learn more, e.g. about the resulting architecture

Choose as many user stories as fit into the iteration
Sum up the real man hours for a user story; the sum should be less
than the hours a week assigned to an iteration

The use stories are the milestones of the iteration

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 24 / 38



Software Development process Project Planning

Techniques for planning your project: Remarks

The planning should include the writing of the report!
You should reserve time in the estimation for writing the report part
relevant to that user story
Create own task which get their estimated man hours and schedule
them in an iteration

Plan needs not be perfect!
Don’t spent to much time

Don’t get stuck in the planning paralysis
Experience with the problem and its implementation changes the
plan
Plan needs to be updated every iteration
Rough sketch of a plan suffices

Based on
Extreme Programming Explained by Kent Beck, Addison Wesley
2004
Planning Extreme Programming by Kent Beck and Martin Fowler,
Addison Wesley 2000

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 25 / 38



Software Development process Project Plan Example

Example Plan: Adventure Game

Adventure Game
Goal: Implementing a command line based adventure game
A player moves through a collection of rooms and levels. Within
each room, the player can look, take up object, and put down
objects.

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 26 / 38



Software Development process Project Plan Example

Example Plan: Step 1: User cases . . .

Use cases
register
change room
start game
advance to next level
look room
look inventory
handle object

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 27 / 38



Software Development process Project Plan Example

Example Plan: Step 1: . . . and User stories

User stories
Player registers successful for the game
Player registers, but name is already used
Player starts game
Player finishes game
Player advances to next level
Player looks into a room
Player moves to adjacent room
Player wants to move to adjacent room, but is not allowed to
Player takes up object
Player lays down object
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 28 / 38



Software Development process Project Plan Example

Example Plan Step 2: Basic Architecture

One program with a command line interface
The program prints out descriptions and the use enters commands

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 29 / 38



Software Development process Project Plan Example

Example Plan Step 3: Estimate User Stories

User stories
Player registers successful for the game

2h
→ 4 h

Player registers, but name is already used
2h

→ 4 h
Player starts game

2h
→ 4 h

Player finishes game
2h

→ 4 h
Player advances to next level

2h
→ 4 h

Player looks into a room
2h

→ 4 h
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 30 / 38



Software Development process Project Plan Example

Example Plan Step 4: Iteration Lengths

Resources
2 people
10 hours a week

Iteration lengths: 1 week
Available resources in an iteration 20h

The first release should be delivered after 4 weeks
thus it contains 4 iterations

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 31 / 38



Software Development process Project Plan Example

Example Plan Step 5: Assigning user stories to
iterations

Iteration 1
Planning
Creating the base structure for the report (1h→ 2h)
Player starts game
Player looks into a room
Player moves to adjacent room

Iteration 2
Player advances to next level
Player finishes game
Player takes up object
Player lays down object
Player registers successful for the game
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 32 / 38



Software Development process Project Plan Example

Example Plan Step 5: Assigning user stories to
iterations

Iteration 3
Player registers, but name is already used
Writing the introduction to the report (2h→ 4h)
. . .

Iteration 4
Player wants to move to adjacent room, but is not allowed to
Finishing the report (4h→ 8h)
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 33 / 38



Software Development process Executing a plan

How to run the project: For each iteration

Update the plan
Check if there are open user stories from the last iteration
Incorporate feedback from the user

Any new user stories?
Did the customer change user stories or the priority of user stories?

Find out how to implement the user stories for this iteration
Create tasks and distribute tasks
Brainstorm on how to implement the user stories

E.g. use CRC cards
Update model and report

use case descriptions
use case diagram
glossary
class diagram
sequence diagram

Implement and test the user stories
If there is the danger that not all user stories can be finished,
concentrate on those that can be finished instead of leaving all
user stories unfinished

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 34 / 38



Software Development process Executing a plan

Contents

1 Version control

2 Software Development process
Introduction
Project Planning
Project Plan Example
Executing a plan

3 Introduction to the project

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 35 / 38



Introduction to the project

Introduction to the project

What is the problem?
Project planning and time recording system

What is the task?
Create a

Requirement specification
Programdesign
Implementation
Tests

Deliver a
report describing the requirement specification, design, and
implementation
CD containing the source code, the tests, and the running program

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 36 / 38



Introduction to the project

Organisational issues

Groups with 2, 3, or 4 students
Report should be written in Danish or English
Program should be written in Java and tests should use JUnit
On May 13 there there will be a short (10min) demonstration of
the program in the E-databar
→ At least the tests need to be demonstrated

Report and CD is to be delivered during the demonstrations on
May 13
Each section, diagram, etc. should name the author who made
the section, diagram, etc.

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 37 / 38



Introduction to the project

Organisational issues

You can talk with other groups on the assignment, but it is not
allowed to copy from others parts of the report or the program.
Any text copy without naming the sources is viewed as cheating
Latest Friday 18.4 18:00 must each project group have created a
group on CompusNet

The project groups members should be members of the group
You have to invite the teaching assistants David and Thomas (one
of them will deny the invitation) and me (Hubert) to the group
By that date must be the project plan put on the CampusNet

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 22, 2008 38 / 38


	Version control
	Introduction
	Use Cases
	How to use CVS with Eclipse

	Software Development process
	Introduction
	Project Planning
	Project Plan Example
	Executing a plan

	Introduction to the project

