
02161: Software Engineering I
Week 8: Design Patterns

Hubert Baumeister

Informatics and Mathematical Modelling
Technical University of Denmark

Spring 2008

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 1 / 59

Contents

1 Introduction

2 Good Design

3 Project

4 Patterns

5 Summay

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 2 / 59

Introduction

What is good design? MarriageAgency Example

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 3 / 59

Introduction

What is good design? MarriageAgency Example 2

Method matchCustomer in class MarriageAgency

public ArrayList<Customer> matchCustomer(Customer customer){
ArrayList<Customer> res = new ArrayList<Customer>();
for (Customer potential : customers) {
if (potential.getSex() != customer.getSex()) {
int yearDiff = Math.abs(potential.getBirtYear()

-customer.getBirtYear());
if (yearDiff <= 10) {
for (String interest : potential.getInterests()) {
if (customer.getInterests().contains(interest)) {
res.add(potential);
break;

} } } } }
return res;

}

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 5 / 59

Introduction

What is good design? Improved Design

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 6 / 59

Introduction

What is good design? Improved Design 2

Method findMatchingCustomers in class MarriageAgency

public ArrayList<Customer>
findMatchingCustomers(Customer customer) {

ArrayList<Customer> res = new ArrayList<Customer>();
for (Customer potential : customers) {
if (customer.match(potential)) {
res.add(potential);

} }
return res;

}

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 8 / 59

Introduction

What is good design? Improved Design 3
Methods in class Customer

public boolean match(Customer c) {
return isOppositeSex(c)

&& ageDifferenceSmaller(c,10)
&& hasOneInterestInCommon(c);

}

protected boolean isOppositeSex(Customer c) {
return sex != c.getSex();

}

protected boolean ageDifferenceSmaller(Customer c, int age) {
return Math.abs(this.getBirthYear() - c.getBirthYear()) <= age;

}

protected boolean hasOneInterestInCommon(Customer c) {
for (String interest : getInterests()) {
if (c.getInterests().contains(interest)) {
return true;
} }

return false;
}

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 10 / 59

Introduction

Why good design / implementation?

Enhancing the readability and the quality of the design allows
to better understand the structure of the program
to make the program more flexible

→ allowing to adapt the program to new requirements
→ to better find bugs

Implementing larger software is not a linear process (i.e.
Requirements analysis, design, implementation)
Instead it is an evolutionary process

Bit of requirements analysis, bits of design, bits of implementation
Bit of requirements analysis, bits of design, bits of implementation
. . .

Each of these steps provides one with insight to better structure a
system
Don’t underestimate how long a program can live and needs to be
maintained and adapted

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 11 / 59

Introduction

Example of a long living program

I wrote a program to visualize the structure of TeX-documents
written 19 years ago to help me writing my masters thesis

Today, I am still using and enhancing the program
generates interconnected Web pages that from a Web sites
can generate read Wiki pages and generate PDF files from them
generates the slides for this lecture based on an outline structure
creates and reads mind maps

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 12 / 59

Introduction

How does one achieve better design?

Write readable and self documenting programs
→ Use self documenting names (e.g. class Person or variable person

instead of class P or px1
→ Other tips can be found in the book Implementation patterns by

Kent Beck and in the book The Pragmatic Progammer by Andrew
Hunt and David Thomas

Create a domain language for your problem and then use it in your
program code
→ Use classes and methods to capture the domain language

Know Design patterns and use them as appropriate

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 13 / 59

Good Design

Contents

1 Introduction

2 Good Design
Basic Principles
High cohesion — low coupling

3 Project

4 Patterns

5 Summay

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 14 / 59

Good Design Basic Principles

DRY principle

DRY principle
Don’t repeat yourself

The idea is to avoid any kind of duplication
Code duplications
Concept duplications
Code / Comments / Documentation
→ Self documenting code
→ Only document ideas, concepts, . . . that are not expressible

(expressed) clearly in the code: e.g. What is the idea behind a
design, what were the design decisions

. . .
Problem with duplication

Consistency: Changes need to be applied to each of the duplicates
Changes won’t be executed because changes needed to be done
in too many places

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 15 / 59

Good Design Basic Principles

DRY principle

Techniques to avoid duplication
Use appropriate abstractions

Inheritance
Classes with instance variables
Methods with parameters
. . .

Use generation techniques
generate documention from code
generate code from more domain specific languages
. . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 16 / 59

Good Design Basic Principles

KISS principle

KISS principle
Keep it simple, stupid

Try to use the simplest solution first
Strive for the simplest solution
Make complex solutions only if needed

Albert Einstein
”Everything should be made as simple as possible, but no simpler.”

Antoine de Saint Exupéry
”It seems that perfection is reached not when there is nothing left to
add, but when there is nothing left to take away”.

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 17 / 59

Good Design Basic Principles

YAGNI principle

YAGNI principle
You ain’t gonna needed it

Avoid doing something for which there is no need→ KISS
This happens a lot with design patterns and thinking to much ahead

”I am now using observer pattern because I think it provides me with
the flexibility later”
”I am create a seperate interface which my class implements,
because maybe later I need different implementations for that
interface”

→ Different kind of flexibility
Make your code refactorable: e.g. with tests, using code expressing
its intention

In practice both are needed: design for change and make your
design changable

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 18 / 59

Good Design High cohesion — low coupling

High cohesion — low coupling

High Cohesion
A class groups a set of a related methods

→ an object is self contained and represents an entity

Low coupling

An object / class is connected only to a few other classes
It fullfils its repsonsibility by delegating responsibility to other
objects
→ c.f. CRC card game rules

High cohesion & low coupling are a corner stone of good design
Low coupling reduces the dependency on other objects

It is easier to change / exchange one object when it is only connected
to a limited number of other objects

High cohesion supports low coupling by grouping related
functionality and data

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 19 / 59

Good Design High cohesion — low coupling

Law of Demeter

Law of Demeter
”Only talk to your immediate friends”
Only method calls to the following objects are allowed

the object itself
its components
objects created by that object
parameters of methods

The Law of Demeter is a special case of low coupling
→ To achieve low coupling one needs to delegate functionality, e.g.

the computation of the calculation of the price is moved from order
to orderline
→ leads to decentralised control

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 20 / 59

Good Design High cohesion — low coupling

Centralised vs Distributed Control

Centralised control
The method of one object does all the work
The remaining objects are merely data objects and usually don’t
have their own behaviour
Typical for a procedural programming style

Distributed control
Objects collaborate to achieve one task

”Instead of doing myself the work, I delegate work to other object”

Each object in a collaboration has behaviour (= is a ”real” object)
Typical object-oriented style

Each object has its own responsibilities
Facilitates polymorphism

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 21 / 59

Good Design High cohesion — low coupling

Centralised Control (Class Diagram)

Product
pricingDetails

Customer
name
address
discountInfo

OrderLine
quantity
price * 11 *

{ordered}

Order
dateReceived
isPrepaid
number
price
calculatePrice
calculateBasePrice
calculateDiscounts

* 1

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 22 / 59

Good Design High cohesion — low coupling

Centralised Control (Sequence Diagram)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 23 / 59

Good Design High cohesion — low coupling

Decentralised Control (Sequence Diagram)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 24 / 59

Good Design High cohesion — low coupling

Decentralised Control (Class Diagram)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 25 / 59

Good Design High cohesion — low coupling

Layered Architecture

High cohesion within a
layer

A layer groups similar
functionality, e.g. the
User interface layer

Loose coupling between
layers

Message flow is
directed from higher
layers to lower layers
but not vice versa
Most messages are
sent to the adjacent
layer

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 26 / 59

Project

Project

Exam project: Monday 14.4 — Monday 12.5
10 min demonstrations of the software are planned for Tuesday
13.5
To be delivered

a CD with the running software and source code
a report describing the software (Use cases, class diagrams,
sequence diagrams, . . .)

Group size: 2 – 4
Group forming: next week

Either you are personally present or someone can speak for you
If not, then there is no guarantee for participation in the exam
project

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 27 / 59

Patterns

Contents

1 Introduction

2 Good Design

3 Project

4 Patterns
Introduction
Observer Pattern
State Pattern
Composite Pattern
Visitor Pattern
Other Patterns

5 Summay
c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 28 / 59

Patterns Introduction

What is a pattern and a pattern language?

Pattern
A pattern is a solution to a problem in context

A pattern usually contains a
discussion on the problem,
the forces involved in the problem,
a solution that addresses the problem,
and references to other patterns

Pattern language
A pattern language is a collection of related patterns

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 29 / 59

Patterns Introduction

History of patterns

Christopher Alexander (architect)
Patterns and pattern language for constructing buildings / cities

→ Timeless Way of Building and A Pattern Language: Towns,
Buildings, Construction (1977/79)

Investigated for use of patterns with Software by Kent Beck and
Ward Cunningham in 1987
Design patterns book (1994)
Analysis patterns (Martin Fowler)
Pattern conferences, e.g. PloP (Pattern Languages of
Programming) since 1994
Portland Pattern repository
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 30 / 59

http://c2.com/cgi/wiki?PeopleProjectsAndPatterns

Patterns Introduction

What is a design pattern?

Design patterns book by ”Gang of Four” (Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides)
A set of best practices for designing software

E.g. Observer pattern, Factory pattern, Composite pattern, . . .

Places to find patterns:
Wikipedia http://en.wikipedia.org/wiki/Design_
pattern_(computer_science)
Portland Pattern repository
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
(since 1995)
Wikipedia http://en.wikipedia.org/wiki/Category:
Software_design_patterns

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 31 / 59

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://c2.com/cgi/wiki?PeopleProjectsAndPatterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Category:Software_design_patterns

Patterns Observer Pattern

Observer Pattern

Observer Pattern
Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically.

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 32 / 59

Patterns Observer Pattern

Observer Pattern

The basic idea is that the object being observed does not know
that there are observers
→ observers can be added independently on the observable (also

called subject)
→ new types of observers can be created without changing the subject

The observer pattern is used often in GUI programming to
connect the presentation of a model with the model itself

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 33 / 59

Patterns Observer Pattern

Observer Pattern

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 34 / 59

Patterns Observer Pattern

Observer Pattern

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 35 / 59

Patterns Observer Pattern

Implementation in Java

Support from the class library: One abstract class and interface:
Interface java.util.Observer

Implement update(Observable o, Object aspect)
Class java.util.Observable

Provides connection to the observers
Provides methods addObserver(Observer o),
deleteObserver(Observer o)

To add and delete observers
setChanged()

Marks the observable / subject as dirty
notifyObservers(), notifyObservers(Object aspects)

Notify the observers that the state of the observable has changed
The aspect can be used to say what has changed in the observable

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 36 / 59

Patterns Observer Pattern

Example: Stack with observers

public class Stack<E> extends Observable {
List<E> data = new ArrayList<E>();

void push(Type o) {
data.add(o);
setChanged();
notifyObserver("data elements");

}

E pop() {
E top = data.remove(data.size())’
setChanged();
notifyObserver("data elements");

}

E.top() {
return data.get(data.size());

}

int size() {
return data.size();

}
...

}

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 38 / 59

Patterns Observer Pattern

Example: Stack observer

Observe the number of elements that are on the stack.
Each time the stack changes its size, a message is printed on the console.
class NumberOfElementsObserver() implements Observer {

Stack<E> stack;

NumberOfElementsObserver(Stack<E> st) {
stack = st;

}

public void update(Observable o, Object aspect) {
System.out..println(subject.size()+" elements on the stack");

}
}

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 40 / 59

Patterns Observer Pattern

Example: Stack observer

Adding an observer

....
Stack<Integer> stack = new Stack<Integer>;
NumberOfElementsObserver observer =

new NumberOfElementsObserver(stack);
stack.addObserver(observer);
stack.push(10);
stack.pop();
...
stack.deleteObserver(observer)
...

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 42 / 59

Patterns State Pattern

State Pattern

State Pattern
Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.

This pattern delegates the behaviour of one object to another
object which

*

State

request1
request2

AClass

request1
request2
...
changeState

State1

request1
request2

State2

request1
request2

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 43 / 59

Patterns State Pattern

Example

Task: Implement a control panel for a safe in a dungeon
The should be visible only when a candle has been removed
The safe door opens only when the key is turned after the candle
has been replaced again
If the key is turned without replacing the candle, a killer rabbit is
released

SecurePanelController

candleRemoved
keyTurned
closeSafe
revealLock
releaseKillerRabbit

Safe

open
close

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 44 / 59

Patterns State Pattern

Example (cont.)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 45 / 59

Patterns State Pattern

Transitions (UML 2.0)

General form
trigger [guard]/effect

Triggers (includes events)
Call Event

messages being sent (e.g. class / interface operation)
Can have parameters that can be used in the guard or in the effect

. . .
→ The event that needs to have happened to fire the transition

Guard
boolean expression

→ Needs to evaluate to true for t he transition to fire
Effect

Sending a message to another object or self
Changing the state of an object (e.g. variable assignment)

→ The effect that happens when the transition fires

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 46 / 59

Patterns State Pattern

Alternative Implementation

The current state is stored in a variable
Events are method calls

public class SecretPanelController {
enum states { wait, lock, open, finalState };
states state = states.wait;

public void candleRemoved() {
switch (state) {
case wait:

if (doorClosed()) {
state = states.lock;
break;

}
}

}

public void keyTurned() {
switch (state) {
case lock:

if (candleOut()) {
state = states.open;

} else
{

state = states.finalState;
releaseRabbit();

}
break;

}
} ... }

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 48 / 59

Patterns State Pattern

Implementation using the state pattern

The current state is an object of a subclass of SecretPanelState
Events are methods whose implementation is delegated to the
state object

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 49 / 59

Patterns Composite Pattern

Composite Pattern

Composite Pattern
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects and
compositions of objects uniformly.

Stykkelister example from the first lecture

Part

*

0..1

Assembly

Component

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 50 / 59

Patterns Composite Pattern

Example: Graphics

Class Diagram

Instance diagram

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 51 / 59

Patterns Visitor Pattern

Visitor Pattern

Visitor Pattern
Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

The object structure (e.g. based on a composite pattern) provides
access to itself through a set of methods

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 52 / 59

Patterns Visitor Pattern

Example: compute costs for stykkelister

Component

computeCost()

{int costs = 0;
 foreach (Component c : components) {
 costs += c.computeCost();
 }
 return costs;
}

*

{return cost}

Assembly

computeCost()

Part
cost
computeCost()

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 53 / 59

Patterns Visitor Pattern

Example: computer costs as a visitor

Visitor

visitPart(Component c)
visitAssembly(Component c)

Function

visitPart
visitAssembly

ComputeCosts

visitPart(Component c)
visitAssembly(Component c)

{ int costs = 0;
 foreach (Component co : c.getComponents()) {
 costs += co.accept(this);
 }
 return costs;
}

{v.visitAssembly(this)}

{return c.getCost()}

{v.visitPart(this)}

Component

acceptVisitor(Visitor v) *

Assembly

acceptVisitor()

Part
cost
acceptVisitor(Visitor v)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 54 / 59

Patterns Visitor Pattern

Visitor pattern

The trick of the visitor is to use double dispatch
add type information to the method name

acceptVisitor→ visitPart, visitAssembly

Use the visitor pattern if
The functions are don’t belong to the concept of the object
structure:e.g. generator functions
One should be able to do traverse an object structure without
changing wanting to add operations to the object structure
One has several functions almost the same. Then one can use the
visitor pattern and inheritance between the visitors do define slight
variants of the functions (e.g. only overriding acceptPart)

Do not use it
if the complexity of the visitor pattern is not justified
if the functions belongs conceptually to the object structure
If the flexibility of the visitor is not needed, e.g.. if one only wants to
add one function

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 55 / 59

Patterns Other Patterns

Anti-Pattern

Anti Pattern

”In computer science, anti-patterns are specific repeated practices that appear initially
to be beneficial, but ultimately result in bad consequences that outweigh the hoped-for
advantages.” from Wikipedia
(http://en.wikipedia.org/wiki/Anti-pattern)

”Patterns of failure”
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis by
William J. Brown, Raphael C. Malveau, and Thomas J. Mowbray

Example: Analysis Paralysis

Stuck with developing the analysis model.
The model never is good enough.
Each time one revisits the same problem, a new variant comes up
Solution: Proceed to design and implementation. This gives new
insights into the analysis→ iterative / evolutionary approach

For a list of anti-patterns see http://en.wikipedia.org/wiki/
Anti-pattern#Recognized.2FKnown_Anti-Patterns)

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 56 / 59

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern#Recognized.2FKnown_Anti-Patterns
http://en.wikipedia.org/wiki/Anti-pattern#Recognized.2FKnown_Anti-Patterns

Summay

Summary Design Patterns

Original Gang of Four book:
Creational Patterns

Abstract Factory, Builder, Factory Method, Prototype, Singleton
Structural Patterns

Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy
Behavioral Patterns

Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Observer, State, Strategy, Template Method, Visitor

There are more: Implementation Patterns, Architectural Patterns,
Analysis Patterns, Domain Patterns . . .

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 57 / 59

Summay

Summary

There is a difference between good and bad design
Good design is impportant
Some basic principles:

DRY, KISS, YAGNI
High cohesion — low coupling
Layered architecture

Patterns capture knowledge
Design patterns
Analysis patterns
Implementation patterns

→ Good design is a life long learning process
e.g. when or when not to apply certain patterns
think about what and why you are doing it!

c©2008 H. Baumeister (DTU Informatik) 02161: Software Engineering I April 7, 2008 58 / 59

	Introduction
	Good Design
	Basic Principles
	High cohesion --- low coupling

	Project
	Patterns
	Introduction
	Observer Pattern
	State Pattern
	Composite Pattern
	Visitor Pattern
	Other Patterns

	Summay

