Systematic Software Test (I)

Anne Haxthausen

Informatics and Mathematical Modelling

Technical University of Denmark

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 1

Overview

Programs often contain unintended errors — how do you find
them?

Software test is an activity the goal of which is to reveal these.

Two types of systematic test:
Structural test
Functional test

Parts of these foils are based on the lecture notes and foils on
Systematic Software Test by Peter Sestoft.

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 2

Structural test versus functional test

Structural test is also known as internal test or white-box test.
Functional test is also known as external test or black-box test.

Structural test Functional test

Starting point || the source code the problem

Found logical errors unobserved cases

kinds of errors || wrong initialization of variables unobserved requirements

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 3

Structural test and functional test

Test case = input data + expected output data

1. Design a test:
a table of input data and the corresponding, expected output
data
a table of input data properties (relates program/problem to
the test cases).
2. Execute the test cases:
(&) run the program with the input data
(b) compare actual output data with the expected output data

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 4

Structural test: Conditionals and loops

Design the test cases such that all parts of the program will be
executed.

Statement | Cases to test
i f Condition false and true

switch Every branch must be executed

for Zero, one, and more than one executions
whi | e Zero, one, and more than one executions
do- whi | e | One and more than one executions

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 - p. 5

Structural test: Composite logical expressions

Test all possible combinations of truth values for terms.

Example: requirements

Write a program that takes some integers as input and prints the two

smallest of these, or the smallest in case there is only one.

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 - p. 7

Example: implementation (MinTwo.java)

public static void main (String[] args) {

int ml=0, m2 = 0;
if (args.length ==

System out. println("No nunbers");

el se {
m1l =

I nt eger. parselnt (args[0]);

if (args.length == 1)

System out. printl|
el se {
i nt obs

n("Smallest =" + nm1l);

I nteger. parselnt(args[1]);

(x '=0) && (1000/x > vy)
false
true false
true true

(x == 0) || (1000/x >vy)
true
false false
false true

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 6

if (obs <
m?2 = ;
for (int i =2
obs = I ntege
if (obs < mi
m2 =

m 1)
m 1

;o ml =

[
1

m1;

obs; }
i < args.|ength;
.parselnt(args[i]);

) obs; }

i +1) {

mil =

else if (obs < m2)

m 2 = obs;

Systemout.println("The two snmall est are

+ ml+" and " + m2);

| *

o 0 b~ W

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 8

Example: structural test of MinTwo Corrected implementation (MinTwo.java)

public static void main (String[] args) {
int Mml1 =0, nmM2 =0;

Choice Input property Test case id if (args.length == 0) [+ 1 */
1true No numbers A System out. println("No nunbers");
1 false At least one number B el S€ {
2 true Exactly one number B m 1= Int S o Sl sel nt (& gs[0]) ;

y if (args.length == 1) [+ 2 %]
2 false At least two numbers C Systemout.println("Smallest =" + m1l);
3 false Second number > first number (o el jse {
3 true Second number < first number D ImntZ ngb; I nteger. parsel nt (ar gs[1]) z
4 zero times Exactly two numbers D i (ObS <' m 1) [+ 3 */
4 once Exactly three numbers E m2 =m1l m1l = obs; } . '
4 more than once At least four numbers H for (I nt i =2, 1 <ar gs. I engt .h; I = |+1) { [+ 4 *]

. . obs = Integer.parselnt(args[i]);

5 true Third number < current minimum E i f (ObS < mi 1) [+ 5 %/
5 false Third number > current minimum F m2 =m1l, ml = obs; }
6 true Third number > current minimum and < second least | F el S_82I f_ (gbs <m 2) [+ 6 =/
6 false Third number > current minimum and > second least | G i = s,

Systemout.println("The two snall est are
+ml+" and " + m2);

}
}
02161 Software Engineering 1 (© Sestoft& Haxthausen, Spring 2008 — p. 9 } 02161 Software Engineering 1 (©)Sestoft& Haxthausen, Spring 2008 — p. 11
Example: structural test of MinTwo Functional test
[Testcaseid | Input | Expected output | Goal: to see whether the program solves the given problem.
A No numbers Method: try to show that the program does not solve the problem.
B 17 Smal lest = 17 Test cases must cover “typical” as well as “extreme” data.
C 27 29 The two smallest are 27 and 29
D 39 37 e twm el 1 Get ere 57 el 96 Prerequisites for functional test
E 49 48 47 The two smallest are 47 and 48 i . L
- T s ool ore 5 o 66 1. A fairly precise description of the problem.
G 67 68 69 The two smallest are 67 and 68 2. ldeas of ‘difficult’ cases and wrong ways to solve the problem.
H 77787976 | The two smellest are 76 and 77 3. The expected output data can by calculated or approximated

Error! without using the program.
Input data set C produces wrong results:

The two smallest are 27 and 0O
Designing a functional test may reveal ambiguities in the description
The variable m 2 is not assigned a value before it is printed.It retains of the problem.
its initial value, O. Designing a functional test may be a good way to begin developing
the program.

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 10 02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 12

Example: Requirements

Write a program that takes some integers as input and prints the two

smallest of these, or the smallest in case there is only one.

Ambiguity: What should we do with an empty list of numbers?

Clarification: We assume that an error message No numnber s

should be given.

Example: Functional test

Table of input data properties:

02161 Software Engineering 1 (© Sestoft& Haxthausen,

Input property Test case id
No numbers A

One number B

Two numbers, equal I

Two numbers, increasing C

Two numbers, decreasing | D

Three numbers, two equal | J

Three numbers, increasing | G

+ table with input and expected output for each test case

Spring 2008 - p. 13

Note that the functional and the structural test can share some of the

test cases.

02161 Software Engineering 1 (©) Sestoft& Haxthausen, Spring 2008 — p. 14

Structural versus functional test

Structural and functional test complement each other.

Structural test:
‘Mechanic’, demands a systematic approach but not a deep
understanding of the problem.
Finds logical errors in the program.
May lead to improvements of the program.

Functional test:

Independent of the program.

Need not be changed when the program is changed (but when
the problem is changed).

Finds unobserved/unclear requirements.
May lead to a more precise problem deSErptON.....: oswseramasn spmmzoas s

	Overview
	Structural test versus functional test
	Structural test and functional test
	Structural test: Conditionals and loops
	Structural test: Composite logical expressions
	Example: requirements
	Example: implementation (MinTwo.java)
	Example: structural test of MinTwo
	Example: structural test of MinTwo
	Corrected implementation (MinTwo.java)
	Functional test
	Example: Requirements
	Example: Functional test
	Structural versus functional test

