
Systematic Software Test (I)
Anne Haxthausen

Informatics and Mathematical Modelling

Technical University of Denmark

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 1

Overview

• Programs often contain unintended errors — how do you find
them?

• Software test is an activity the goal of which is to reveal these.

• Two types of systematic test:
• Structural test
• Functional test

Parts of these foils are based on the lecture notes and foils on
Systematic Software Test by Peter Sestoft.

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 2

Structural test versus functional test

Structural test is also known as internal test or white-box test.
Functional test is also known as external test or black-box test.

Structural test Functional test

Starting point the source code the problem

Found logical errors unobserved cases

kinds of errors wrong initialization of variables unobserved requirements

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 3

Structural test and functional test

Test case = input data + expected output data

1. Design a test:
• a table of input data and the corresponding, expected output

data
• a table of input data properties (relates program/problem to

the test cases).

2. Execute the test cases:
(a) run the program with the input data
(b) compare actual output data with the expected output data

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 4

Structural test: Conditionals and loops

Design the test cases such that all parts of the program will be
executed.

Statement Cases to test

if Condition false and true
switch Every branch must be executed

for Zero, one, and more than one executions
while Zero, one, and more than one executions

do-while One and more than one executions

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 5

Structural test: Composite logical expressions

Test all possible combinations of truth values for terms.

(x != 0) && (1000/x > y)
false
true false
true true

(x == 0) || (1000/x > y)
true
false false
false true

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 6

Example: requirements

Write a program that takes some integers as input and prints the two

smallest of these, or the smallest in case there is only one.

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 7

Example: implementation (MinTwo.java)

public static void main (String[] args) {
int mi1 = 0, mi2 = 0;
if (args.length == 0) /* 1 */

System.out.println("No numbers");
else {

mi1 = Integer.parseInt(args[0]);
if (args.length == 1) /* 2 */

System.out.println("Smallest = " + mi1);
else {

int obs = Integer.parseInt(args[1]);
if (obs < mi1) /* 3 */

{ mi2 = mi1; mi1 = obs; }
for (int i = 2; i < args.length; i = i+1) { /* 4 */

obs = Integer.parseInt(args[i]);
if (obs < mi1) /* 5 */
{ mi2 = mi1; mi1 = obs; }

else if (obs < mi2) /* 6 */
mi2 = obs;

}
System.out.println("The two smallest are "

+ mi1 + " and " + mi2);
}

}
} 02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 8

Example: structural test of MinTwo

Choice Input property Test case id

1 true No numbers A

1 false At least one number B

2 true Exactly one number B

2 false At least two numbers C

3 false Second number ≥ first number C

3 true Second number < first number D

4 zero times Exactly two numbers D

4 once Exactly three numbers E

4 more than once At least four numbers H

5 true Third number < current minimum E

5 false Third number ≥ current minimum F

6 true Third number ≥ current minimum and < second least F

6 false Third number ≥ current minimum and ≥ second least G

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 9

Example: structural test of MinTwo

Test case id Input Expected output

A No numbers

B 17 Smallest = 17

C 27 29 The two smallest are 27 and 29

D 39 37 The two smallest are 37 and 39

E 49 48 47 The two smallest are 47 and 48

F 59 57 58 The two smallest are 57 and 58

G 67 68 69 The two smallest are 67 and 68

H 77 78 79 76 The two smallest are 76 and 77

Error!
Input data set C produces wrong results:
The two smallest are 27 and 0

The variable mi2 is not assigned a value before it is printed.It retains
its initial value, 0.

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 10

Corrected implementation (MinTwo.java)
public static void main (String[] args) {

int mi1 = 0, mi2 = 0;
if (args.length == 0) /* 1 */

System.out.println("No numbers");
else {

mi1 = Integer.parseInt(args[0]);
if (args.length == 1) /* 2 */

System.out.println("Smallest = " + mi1);
else {

int obs = Integer.parseInt(args[1]);
mi2 = obs;
if (obs < mi1) /* 3 */

{ mi2 = mi1; mi1 = obs; }
for (int i = 2; i < args.length; i = i+1) { /* 4 */

obs = Integer.parseInt(args[i]);
if (obs < mi1) /* 5 */
{ mi2 = mi1; mi1 = obs; }

else if (obs < mi2) /* 6 */
mi2 = obs;

}
System.out.println("The two smallest are "

+ mi1 + " and " + mi2);
}

}
} 02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 11

Functional test

Goal: to see whether the program solves the given problem.
Method: try to show that the program does not solve the problem.
Test cases must cover “typical” as well as “extreme” data.

Prerequisites for functional test

1. A fairly precise description of the problem.

2. Ideas of ‘difficult’ cases and wrong ways to solve the problem.

3. The expected output data can by calculated or approximated
without using the program.

Designing a functional test may reveal ambiguities in the description
of the problem.
Designing a functional test may be a good way to begin developing
the program.

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 12

Example: Requirements

Write a program that takes some integers as input and prints the two

smallest of these, or the smallest in case there is only one.

Ambiguity: What should we do with an empty list of numbers?

Clarification: We assume that an error message No numbers
should be given.

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 13

Example: Functional test

Table of input data properties:

Input property Test case id

No numbers A

One number B

Two numbers, equal I
Two numbers, increasing C

Two numbers, decreasing D
Three numbers, two equal J

Three numbers, increasing G

... ...

+ table with input and expected output for each test case
Note that the functional and the structural test can share some of the
test cases.

02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 14

Structural versus functional test

Structural and functional test complement each other.

Structural test:

• ‘Mechanic’, demands a systematic approach but not a deep
understanding of the problem.

• Finds logical errors in the program.

• May lead to improvements of the program.

Functional test:

• Independent of the program.

• Need not be changed when the program is changed (but when
the problem is changed).

• Finds unobserved/unclear requirements.

• May lead to a more precise problem description.02161 Software Engineering 1 c©Sestoft& Haxthausen, Spring 2008 – p. 15

	Overview
	Structural test versus functional test
	Structural test and functional test
	Structural test: Conditionals and loops
	Structural test: Composite logical expressions
	Example: requirements
	Example: implementation (MinTwo.java)
	Example: structural test of MinTwo
	Example: structural test of MinTwo
	Corrected implementation (MinTwo.java)
	Functional test
	Example: Requirements
	Example: Functional test
	Structural versus functional test

